國立成功大學八十二學年度轉學生考試(微積分試題)#/頁

二、不抄题,但須標明題號. 三、每題均須寫出計算過程或説明道理,否則不予計分.

注意:一、務請依序作答,否則酌予扣分.

1. (1) Let $f:[0,+\infty) \longrightarrow \mathbb{R}$ such that $f(x) = \cos \sqrt{x}$.

(a) Find the derivative of f;	4%
(b) Evaluate $\int \cos \sqrt{x} dx$.	4%
(2) Find the limit $\lim_{x\to 0^+} x^{\tan x}$.	8%
2. (1) Find the Maclaurin series of $f(x) = (1+x)^{\alpha}$, where $\alpha \in \mathbb{R}$. Show that	
the function $f(x)$ is analytic at $x = 0$.	8%
(2) Find the 4-th order Taylor's expansion of $\sin(x+2y)$ at the point $(0,0)$.	8%
3. (1) Find $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$.	8%
(2) Is the function	
$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$	
0, if (x,y) = (0,0),	
continuously partially differentiable at $(0,0)$. Is f differentiable at $(0,0)$?	8%
4. (1) Show that $\int_0^{+\infty} e^{-x^2} dx$ is convergent. Also find the value which the improp	er
integral converges to.	8%
(2) Let R be the region between the graph of the curve $y = \exp(-x^2)$ and	its
asymptote. Find the volume of the solid generated by revolving the region	. $oldsymbol{R}$
about the Y -axis.	8%
5. (1) Let $a_1 > 0$, $a_{n+1} = \frac{6(1+a_n)}{7+a_n}$. Show that the sequence $\{a_n\}$ is convergent and find its limit.	8%
	h
(2) Is the series $\sum_{n=1}^{+\infty} \frac{e^n n!}{n^n}$ convergent? If it is convergent, find its sum; otherwi	se,
show the reason why it is divergent.	10%
6. (1) Let R be a connected compact region in \mathbb{R}^2 and let γ be the boundary of R such that it is a smooth closed oriented simple curve. Show that the area	
R is $\frac{1}{2}\int_{\mathbb{R}^{N}} dx dx dx dx$	
$\frac{1}{2}\int_{\gamma}-y\ dx+x\ dy.$	
	8%
(2) Consider the extrema of the function $f(x,y) = (y-x^2)(y-x^3)$.	10%

012