國立成功大學八十一學年度轉學步考試(微積分試題) #/頁

- 1. (i) Suppose $u=f(x,y,z),\ z=g(x,y,t)$ and y=h(x,t) are differentiable real-valued functions in suitable domains. Find $\frac{\partial u}{\partial x}(x,t)=?$ $\frac{\partial u}{\partial t}(x,t)=?$ 10%
 - (ii) Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous and $g: \mathbb{R} \to \mathbb{R}$ is defined by $g(t) = \int_t^{t^2} \left(\int_0^{x^3} f(x, y) \, dy \right) dx.$ Determine g'(t) = ? 10%
- 2. (i) Is the integral $\int_{0+}^{1} \sin \frac{1}{x} dx$ convergent? Justify your answer. 10%
 - (ii) Let $a_n = \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot 2n}$. Is $\{a_n\}$ convergent? Justify your answer.
- 3. (i) Find the work done by the force F(x,y,z)=(yz,xz,xy) in moving an object from (0,0,0) to (1,2,3) along the curve $\overrightarrow{\gamma}(t)=(t,2t,3t)$. 10%
 - (ii) Use Green's Theorem to evaluate $\int_C x^2 y \, dx + 3xy \, dy$, where C is the positively oriented simple closed curve determined by the graphs of $y = x^2$ and $y = \sqrt{x}$.
- 4. Let f be differentiable for x > 0. Prove or disprove
 - (i) If $\lim_{x \to \infty} f(x) = 0$, then $\lim_{x \to \infty} f'(x) = 0$.
 - (ii) If $\lim_{x \to 0^+} f(x) = \infty$, then $\lim_{x \to 0^+} f'(x) = -\infty$.
- 5. (i) Evaluate $\int_0^1 (\int_x^1 \frac{\sin y}{y} \, dy) \, dx$. 10%
 - (ii) Evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{1 + (\tan x)^{\sqrt{3}}}.$ 10%