國立成功大學應用數學所數值分析博士班資格考 September, 24, 2010

- 1. <u>Definition</u>: A sequence $\{p_n\}_{n=1}^{\infty}$ is said to be convergent to p of order α with asymptotic error constant λ if $\lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = \lambda$.
 - (i) Let $g:[a,b] \longrightarrow [a,b]$ be a continuous function. Show that function g has at least one fixed point in (a,b), that is, there is a point $p^* \in [a,b]$ such that $g(p^*) = p^*$. 5%
 - (ii) Let $p_{n+1} = g(p_n)$, with $p_0 \in (a, b)$, give a fixed point iteration. Please find a sufficient condition such that this fixed point iteration is convergent of order k, where k is a positive integer. 10%
 - (iii) Show that the Newton's method is a local quadratic method (i.e. $\alpha=2$), if the method is convergent. 5%
- 2. Show that if u(x) is a function that interpolates f(x) at $x_0, x_1, \ldots, x_{n-1}$ and v(x) is a function that interpolates f(x) at x_1, x_2, \ldots, x_n then the function w(x) given by

$$w(x) = \frac{(x_n - x)u(x) + (x - x_0)v(x)}{x_n - x_0}$$

interpolates f(x) at x_0, x_1, \ldots, x_n . (10%)

- 3. Is it possible to use af(x+h) + bf(x) + cf(x-h) with suitably chosen coefficients a, b, c to approximate f'''(x)? How many function values at least are required to approximate f'''(x)? 10%
- 4. Consider the initial value problem

(I.V.P.)
$$\begin{cases} y' = f(t, y), & a \le t \le b, \\ y(a) = \alpha. \end{cases}$$

(a) Show that

$$y'(t_i) = \frac{-3y(t_i) + 4y(t_{i+1}) - y(t_{i+2})}{2h} + \frac{h^2}{3}y'''(\xi_i).$$

for some ξ_i with $t_i \leq \xi_i \leq t_{i+2}$. (10%)

(b) Part (a) suggests the difference method

$$w_{i+2} = 4w_{i+1} - 3w_i - 2hf(t_i, w_i), \text{ for } i = 0, 1, \dots, n-2.$$

Analyze this method for consistency, stability and convergence. (10%)

5. Consider a linear system Ax = b, where

$$A = \left[\begin{array}{ccc} 1 & 0 & a \\ 0 & 1 & 0 \\ a & 0 & 1 \end{array} \right].$$

- (i) Choose the range of a so that A is positive definite. (5%)
- (ii) Find a range of a so that the Jacobi iteration converges. (5%)
- (iii) Find a range of a so that the Gauss-Seidel iteration converges.
- 6. Let $A = \begin{bmatrix} a & a \varepsilon \\ 2(a + \varepsilon) & 2a \end{bmatrix}$ where $a \approx O(1)$ and ε is sufficiently small.
 - (a) Find A^{-1} . (5%)
 - (b) Choose b, δb , x and δx such that

$$Ax = b,$$
 $A(x + \delta x) = b + \delta b,$

and $\frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}}$ is small, but $\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}}$ is large. (10%)

(c) Choose b, δb , x and δx such that

$$Ax = b,$$
 $A(x + \delta x) = b + \delta b,$

and $\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}}$ is small, but $\frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}}$ is large. (103)