國立成功大學應用數學所 數值分析 博士班資格考 February, 29, 2008

- 1. Let x be a floating point number in IEEE double precision arithmetic satisfying $1 \le x < 2$. Show that $f\ell(x*(1/x))$ is either 1 or $1 \epsilon/2$, where $\epsilon = 2^{-52}$ (the machine epsilon). (15%)
- 2. Let x, y be two non-zero vectors in \mathbb{R}^n . Show that there is always a Householder transformation $H \in \mathbb{R}^{n \times n}$ such that Hx = y. (15%)
- 3. Suppose the perturbation $\delta(t)$ is proportional to t, that is, $\delta(t) = \delta t$ for some constant δ . Show directly that the following initial-value problem

$$y' = 1 - y, \ 0 \le t \le 2,$$

 $y(0) = 0$

is well-posed. (15%)

- 4. Let $A(\epsilon) \in \mathbb{R}^{n \times n}$ be a real matrix function of the real variable ϵ , that is, each element of matrix $A(\epsilon)$ is a function of ϵ . Show that the eigenvector $x(\epsilon)$ corresponding to a multiple eigenvalue $\lambda(\epsilon)$ can be not differentiable with respect to ϵ whenever all elements of matrix $A(\epsilon)$ and the eigenvalue $\lambda(\epsilon)$ are differentiable. (15%)
- 5. Calculate $\sqrt[5]{33}$ upto 4 digits after the decimal point and estimate the error bound of your answer. (15%)
- 6. Consider the initial-value problem

$$y' = f(t, y), \ a \le t \le b,$$

 $y(a) = \alpha$

Let h = (b - a)/N. Show that the difference method

$$w_0 = \alpha,$$

$$w_{i+1} = w_i + a_1 f(t_i, w_i) + a_2 f(t_i + \alpha_2, w_i + \delta_2 f(t_i, w_i)),$$

for each $i=0,1,\ldots,N-1$, can not have local truncation error $O(h^3)$ for any choice of constants a_1,a_2,α_2 and δ_2 . (15%)

7. Let $A = \begin{bmatrix} 0 & 1 \\ a & b \end{bmatrix}$ be a 2×2 real matrix. Suppose that A has only a double eigenvalue. Show that A must be similar to a Jordan matrix.