Functional Analysis

96.10.1

- Show that a normed linear space X is complete if every absolutely convergent series is convergent in X. (14%)
- 2. Prove that if X is a normed linear space and $x \in X$, then $||x|| = \sup\{|f(x)| : f \in X^* \text{ and } ||f|| \le 1\}.$ (12%)
- 3. Prove that an orthonormal sequence $\{\varphi_n\}$ is complete in $L^2(a,b)$ if $\sum_{n=1}^{\infty} \left(\int_a^x \varphi_n(t) \, dt \right)^2 = x a \text{ for all } x \in (a,b). \tag{16\%}$
- 4. Let X and Y be Banach spaces and let $A \in \mathcal{B}(X,Y)$. Prove that there is a constant c > 0 such that $||Ax|| \ge c||x||$ for all $x \in X$ if and only if $\ker A = \{0\}$ and $\operatorname{ran} A$ is closed. (16%)
- 5. Let T be a compact linear operator from a Banach space X onto itself. Show that if T^{-1} is a bounded operator, then X is finite-dimensional. (12%)
- Let A be a real symmetric n × n matrix. Consider A as an operator in ℝⁿ given by x → Ax. Prove that ||A|| = max |λ_j|, where λ_j are the eigenvalues of A.
- Let X and Y be normed linear spaces and T ∈ B(X,Y). Prove that if {x_n} is a sequence in X that is weakly convergent to x₀, then {Tx_n} is weakly convergent to Tx₀.