- 1. (15 points)
 - (a) Give an example of a function that is in $L^2(\mathbb{R})$ but not in $L^1(\mathbb{R})$.
 - (b) Give an example of a function that is in $L^1((0,1))$ but not in $L^2((0,1))$.
 - (c) Prove that any function $f \in L^1(I) \cap L^2(I)$ for any interval $I \subset \mathbb{R}$ must be in $L^p(I)$ for all p between 1 and 2.
- 2. (20 points) Suppose $f \in L^1(\mathbb{R})$.0 For each $x \in \mathbb{R}$, let $g(x) = \int_{\mathbb{R}} e^{-ixy^2} f(y) dy$.
 - (a) Prove that the integral exists for every x.
 - (b) Prove that g is a continuous function.
 - (c) Prove that there is a dense subset S of $L^1(\mathbb{R})$ such that if $f \in S$, then $\lim_{|x| \to \infty} g(x) = 0$.
 - (d) Prove that if $f \in L^1(\mathbb{R})$, then $\lim_{|x| \to \infty} g(x) = 0$
- 3. (10 points) Let (X, \mathscr{A}, μ) be a measure space. Let f be a positive integrable function on X. Prove that for each $\varepsilon > 0$, there exists a $\delta > 0$ such that, for any $A \in \mathscr{A}$, if $\mu(A) \leq \delta$ then $\int_A f d\mu \leq \varepsilon$.
- 4. (10 points) Prove that there exists an orthonormal basis

$$\mathcal{B} = \{ f \in L^2([0,1]) \mid \int_0^1 \frac{|f(x)| dx}{x} < \infty, \text{ and } \int_0^1 \frac{f(x) dx}{x} = 0 \}$$
 of $L^2([0,1])$.

- **Hint:** (i) Consider $\mathscr{S} = \{ f \in L^2([0,1]) \mid \int_0^1 \frac{|f(x)| dx}{x} < \infty \}$, and let T be an operator defined on \mathscr{S} by $Tf = \int_0^1 \frac{f(x) dx}{x}$ for each $f \in \mathscr{S}$.
- (ii) Consider, for each $n \in \mathbb{N}$, the characteristic function $g_n = \chi_{[1/n,1]}$ of $[\frac{1}{n}, 1]$.

- 5. (20 points) Let (X, \mathcal{B}, μ) be a finite measure space. Suppose that $(f_n)_{n \in \mathbb{N}}$ is a sequence of functions in $L^1(\mu)$, converging almost everywhere to an $L^1(\mu)$ function f. Suppose also that $\lim_{n \to \infty} ||f_n||_1 = ||f||_1$.
 - (a) Prove that for every measurable set A, $\lim_{n\to\infty}\int_A |f_n|d\mu = \int_A |f|d\mu$.
 - (b) Prove that $\lim_{n\to\infty} ||f_n f||_1 = 0$.
- 6. (10 points) Let $C \in (0, 1)$. For each $N \in \mathbb{N}$, show that there exists a δ_N , depending on C, with the following properties:
 - (a) If $A_1, ..., A_N$ are measurable sets in [0, 1] each with measure C, then $m(A_i \cap A_j) \ge (1 \delta_N)C^2$ for some $i \ne j$;
 - (b) $\lim_{N\to\infty} \delta_N = 0$.

Hint: Let $F = \sum_{n=1}^{N} \chi_{A_n}$, where χ_{A_n} denotes the characteristic function of the subset A_n . Find F^2 .

- 7. (15 points) Let $(f_n)_{n\in\mathbb{N}}$ be an orthonormal sequence in $L^2([0,1])$. Let $S_n=\frac{1}{n}\sum_{j=1}^n f_j$.
 - (a) Prove that $||S_n||_2^2 = \frac{1}{n}$.
 - (b) Let $(\lambda_j)_{j\in\mathbb{N}}$ be a sequence of positive integers such that $\sum_{j=1}^{\infty} \frac{1}{\lambda_j} < \infty$. Prove that

 $\sum_{i=1}^{\infty} |S_{\lambda_i}|^2$ converges almost everywhere, and S_{λ_i} converges to 0 almost everywhere.