Analysis, Sep., 2007

E: easy, M: moderate, D: difficult.

- 1. (E, 15 points) Let f(x) be a real-valued function whose domain is measurable. Please show that the following statements are equivalent.
 - (i) For any $\alpha \in R$, $\{x : f(x) > \alpha\}$ is measurable.
 - (ii) For any $\alpha \in R$, $\{x : f(x) \ge \alpha\}$ is measurable.
- 2. (M, 15 points) Suppose that $f \in L^1(R)$. Let $F(x) = \int_R f(t) \frac{\sin xt}{t} dt$.
 - (a) Prove that F is differentiable on R and find F'(x).
 - (b) Determine whether F is absolutely continuous on every compact subinterval of R.
- 3. (D, 20 points) $1 , <math>f \in L^p(0, \infty)$. Let $F(x) = \frac{1}{x} \int_0^x f(t) dt$, $0 < x < \infty$.
 - (a) Prove that

$$||F||_p \le \frac{p}{p-1} ||f||_p.$$

- (b) Prove that the equality holds only if f = 0 a.e.
- 4. (M, 15 points) Let $\{f_n\}$ be a sequence of non-negative measurable functions on $(-\infty, \infty)$ such that $f_n \to f$ a.e., and suppose that $\int_R f_n \to \int_R f < \infty$. Please prove that for each measurable set E,

$$\int_E f_n \to \int_E f.$$

5. (E, 10 points) Please prove that

$$\lim_{A \to \infty} \int_0^A \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

(Hint:
$$\frac{1}{x} = \int_0^\infty e^{-xt} dt, \quad x > 0.$$
)

6. (E, 15 points) A step function is, by definition, a finite linear combination of characteristic functions of bounded intervals in R^1 . Let $f \in L^1(R^1)$. Prove that there is a sequence $\{g_n\}$ of step functions so that

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}|f(x)-g_n(x)|dx=0.$$

7. (M, 10 points) Let g be a non-negative measurable function on [0,1]. Please show that

$$\log \int g(t)dt \geq \int \log(g(t))dt$$

whenever the right side is defined.