- 1. Let T be a compact operator on a Hilbert space H, and let A be the unique positive square root of T^*T .
 - (10%)(a) Show that ||Ah|| = ||Th|| for all h in H.
 - (b) Show that there is a unique operator U such that ||Uh|| = ||h||where $h \perp \ker T$, Uh = 0 where $h \in \ker T$, and UA = T. (10%)
- 2. Let X be a Banach space and suppose $\{x_n\}$ is a sequence in X such that for each x in X there are unique scalars $\{\alpha_n\}$ such that $\lim_{n\to\infty} ||x-\sum_{k=1}^n \alpha_k x_k|| = 0$. Such a sequence is called a Schauder basis.
 - (5%)(a) Prove that X is separable.
 - (b) Let $Y = \{ \{\alpha_n\} : \{\alpha_n\} \text{ is a sequence of scalars such that } \sum_{n=1}^{\infty} \alpha_n x_n \}$ converges in X and for $y = \{\alpha_n\}$ in Y define $||y|| = \sup_n ||\sum_{k=1}^n \alpha_k x_k||$. (10%)Show that Y is a Banach space.
 - (c) Show that there is a bounded bijection $T: X \to Y$. (10%)
 - (d) If $n \ge 1$ and f_n is a linear functional on X defined by $f_n(\sum_{k=1}^{\infty} \alpha_k x_k) = \alpha_n$, show that $f_n \in X^*$. (10%)
- 3. Suppose X is an infinite-dimensional normed space. If $S = \{x \in X : ||x|| = 1\}$, then the weak closure of S is $\{x \in X : ||x|| \le 1\}$. (15%)
- 4. If X is compact, $k \in C(X \times X)$, and μ is a regular Borel measured on X, show that

$$Kf(x) = \int k(x, y) f(y) \, d\mu(y)$$

defines a compact operator on C(X). (15%)

5. Suppose f is a complex continuous function in \mathbb{R}^n , with compact support. Prove that $\psi P_j \to f$ uniformly on \mathbb{R}^n , for some $\psi \in \mathcal{D}$ and for some sequence $\{P_j\}$ of polynomials. (15%)