Qualified Examination: Partial Differentiation Equation September, 2006 Name:_____ Do all problems. (E: easy, M: moderate, D:difficult) 1. (20 points) (M) Let $Lu = \sum_{k=1}^{3} a_k(x) \frac{\partial u}{\partial x_k}$, $x = (x_1, x_2, x_3) \in \Omega$, where Ω is an open set in \mathbb{R}^3 and $a_k(x) \in C^{\infty}(\Omega)$. Given $f \in L^2(\Omega)$, we say that u is an L^2 weak solution of Lu = f in Ω if $u \in L^2_{loc}(\Omega)$ and $$\langle u, L'\psi \rangle = \langle f, \psi \rangle, \quad \forall \psi \in C_c^{\infty}(\Omega),$$ where $L'u = -\sum_{k=1}^{3} \frac{\partial(a_k u)}{\partial x_k}$. Suppose that there is a constant c such that $$\langle f, \phi \rangle \leq c \|L'\phi\|_{L^2(\Omega)}, \quad \forall \phi \in C_c^{\infty}(\Omega).$$ Please prove that there exists an L^2 weak solution of $$Lu = f$$ (Note: $$\langle f, g \rangle = \int_{\Omega} f g dx$$, $||f||_{L^2} = (\int_{\Omega} f^2 dx)^{\frac{1}{2}}$.) 2. (20 points) (M) Use the Fourier transform method to solve the initial value problem $$u_t = u_{xx}, -\infty < x < \infty, t > 0,$$ $$u(x,0) = f(x), -\infty < x < \infty.$$ And prove that u satisfies the following inequality $$||u||_p(t) \le \frac{1}{(4\pi t)^{\frac{1}{2}(\frac{1}{q}-\frac{1}{p})}}||f||_q, \quad t > 0,$$ for $1 \leq q \leq p \leq \infty$. (Note that the L^p, L^q norms are with respect to x.) 3. (20 points) (E) Solve the initial value problem $$u_t + u_x - 3u = t, \quad x \in R, t > 0.$$ $u(x, 0) = x^2, \quad x \in R.$ - 4. (20 points) (M) - (a) Find the Green's function for the quadrant $$Q = \{(x, y) : x > 0, y > 0\}.$$ (b) Use your answer in (a) to solve the Dirichlet problem $$u_{xx} + u_{yy} = 0$$, for $(x, y) \in Q$, $u(0, y) = g(y)$ for $y > 0$, $u(x, 0) = h(x)$ for $x > 0$. 5. (20 points) (M) The three-dimensional wave equation is $$u_{tt} - c^2 \Delta u = 0,$$ where u = u(x, y, z, t) and Δ is the Laplacian operator. For waves with spherical symmetry, $u = u(\rho, t)$, where $\rho = \sqrt{x^2 + y^2 + z^2}$. Please derive the spherically symmetric wave equation in this special case and find its general solution.