Qualified Examination: Partial Differentiation Equation

September, 2006

Name:_____

Do all problems. (E: easy, M: moderate, D:difficult)

1. (20 points) (M)

Let $Lu = \sum_{k=1}^{3} a_k(x) \frac{\partial u}{\partial x_k}$, $x = (x_1, x_2, x_3) \in \Omega$, where Ω is an open set in \mathbb{R}^3 and $a_k(x) \in C^{\infty}(\Omega)$. Given $f \in L^2(\Omega)$, we say that u is an L^2 weak solution of Lu = f in Ω if $u \in L^2_{loc}(\Omega)$ and

$$\langle u, L'\psi \rangle = \langle f, \psi \rangle, \quad \forall \psi \in C_c^{\infty}(\Omega),$$

where $L'u = -\sum_{k=1}^{3} \frac{\partial(a_k u)}{\partial x_k}$.

Suppose that there is a constant c such that

$$\langle f, \phi \rangle \leq c \|L'\phi\|_{L^2(\Omega)}, \quad \forall \phi \in C_c^{\infty}(\Omega).$$

Please prove that there exists an L^2 weak solution of

$$Lu = f$$

(Note:
$$\langle f, g \rangle = \int_{\Omega} f g dx$$
, $||f||_{L^2} = (\int_{\Omega} f^2 dx)^{\frac{1}{2}}$.)

2. (20 points) (M)

Use the Fourier transform method to solve the initial value problem

$$u_t = u_{xx}, -\infty < x < \infty, t > 0,$$

$$u(x,0) = f(x), -\infty < x < \infty.$$

And prove that u satisfies the following inequality

$$||u||_p(t) \le \frac{1}{(4\pi t)^{\frac{1}{2}(\frac{1}{q}-\frac{1}{p})}}||f||_q, \quad t > 0,$$

for $1 \leq q \leq p \leq \infty$. (Note that the L^p, L^q norms are with respect to x.)

3. (20 points) (E)

Solve the initial value problem

$$u_t + u_x - 3u = t, \quad x \in R, t > 0.$$

 $u(x, 0) = x^2, \quad x \in R.$

- 4. (20 points) (M)
 - (a) Find the Green's function for the quadrant

$$Q = \{(x, y) : x > 0, y > 0\}.$$

(b) Use your answer in (a) to solve the Dirichlet problem

$$u_{xx} + u_{yy} = 0$$
, for $(x, y) \in Q$,
 $u(0, y) = g(y)$ for $y > 0$,
 $u(x, 0) = h(x)$ for $x > 0$.

5. (20 points) (M)

The three-dimensional wave equation is

$$u_{tt} - c^2 \Delta u = 0,$$

where u = u(x, y, z, t) and Δ is the Laplacian operator. For waves with spherical symmetry, $u = u(\rho, t)$, where $\rho = \sqrt{x^2 + y^2 + z^2}$. Please derive the spherically symmetric wave equation in this special case and find its general solution.