PhD Qualify Exam, Analysis, Feb. 24, 2006

Show all works

1.[10%] Explain the meaning of the Lebesgue integral $\int_R f(x) dx$. Begin by defining Lebesgue outer measure, measurable sets and measurable functions. Then explain how the Lebesgue integral is defined.

- **2.**[15%] Suppose $f \in L^1(R)$. Let $F(x) = \int_R f(t) \frac{\sin xt}{t} dt$.
 - **a.** Prove that F is differentiable on R and find F'(x).
 - **b.** Determine whether or not F is absolutely continuous on every compact subinterval of R.
- **3.**[15%] Suppose $f_n \in L^2[0,1], n = 1, 2, 3, \dots$, and $\sum_{1}^{\infty} ||f_n||_2 < \infty$. Prove that
 - a. $\sum_{1}^{\infty} |f_n(x)| < \infty \ a.e.$
 - **b.** If $f(x) = \sum_{1}^{\infty} f_n(x)$ a.e., then $f \in L^2[0,1]$ and $||f||_2 \le \sum_{1}^{\infty} ||f_n||_2$.
- **4.**[10%] Let g be a nonnegative measurable function on [0,1]. Then

$$\log \int g(t) dt \ge \int \log(g(t)) dt$$

whenever the right side is defined.

5.[10%] Let $\langle A_n \rangle_{n \in \mathbb{N}}$ be a sequence of connected subsets of the topological space X such that $A_n \cap A_{n+1} \neq \emptyset$ for all $n \in \mathbb{N}$. Prove that the set $\bigcup_{n \in \mathbb{N}} A_n$ is connected.

6.[15%] Let (X, B, μ) be a finite measure space. Suppose that ν is a measure defined on B such that ν is absolutely continuous with respect to μ and such that $\nu(X)$ is finite. Let g be the Radon-Nikodym defivative of ν with respect to μ . Prove that $\int_X f d\nu = \int_X f g d\mu.$

7.[15%] Let $f \in L^2[0,1]$ and suppose that for each q such that $1 < q < \infty$, $\left| \int_0^1 fg \right| \le ||g||_q$ for every $g \in C[0,1]$.

- **a.** Prove that $f \in \bigcap_{1 .$
- **b.** Is $f \in L^{\infty}[0,1]$? Explain your answer.

8.[10%] Find the Hausdorff dimension of $C \times C$, where C is the Cantor Set, by computing the following quantities:

First

$$\lambda_{\alpha}^{\epsilon}(C \times C) = \inf \sum_{i=1}^{\infty} r_i^{\alpha},$$

where $\langle r_i \rangle$ are radii of sequence of balls $\langle B_i \rangle$ that covers $C \times C$ and for which $r_i < \epsilon$.

Second,

$$m_{\alpha}(C \times C) = \lim_{\epsilon \to 0} \lambda_{\alpha}^{\epsilon}(C \times C).$$

Finally, Hausdorff dimension of $C \times C$ is $\inf\{\alpha : m_{\alpha}(C \times C) = \infty\}$.