- 1. [20%] Let H be a complex Hilbert space and A be a linear functional on H. Define $ker(A) = \{y \in H | A(y) = 0\}$.
 - (a) Prove that if A is continuous, then ker(A) is a closed subspace of H.
 - (b) Prove that if A is discontinuous, then ker(A) is dense in H.
- 2. [10%] Let A be a compact normal operator on a complex Hilbert space H. (Recall that the normal means that $AA^* = A^*A$.) Prove that there is an orthonormal basis for H made up of eigenvectors for A.
- **3.** [10%] Let A be a bounded linear operator on a Hilbert space with ||A|| < 1. Prove that $(I A)^{-1}$ exists (here I is the identity operator).
- **4.** [10%] Show that there exists a bounded linear functional λ on $L^{\infty}([-1,1])$ such that $\lambda(f) = f(0)$ for each $f \in C([-1,1])$. (The space $L^{\infty}([-1,1])$ is defined using the Lebesgue measure.)
- **5.** [20%] Let X be a Banach space and $P: X \to X$ be a (not necessarily continuous) linear operator with domain X such that $P^2 = P$. Let R be the range of P and N be the kernel of P.
 - (a) Prove that X is the direct sum of N and R.
 - (b) Prove that P is continuous if and only if both R and N are closed.
- **6.** [10%] Let X be a Banach space and $B: X \times X \to R$ be a bilinear form such that
 - (i) for each fixed $x \in X$, the map $y \to B(x,y)$ is continuous, and
 - (ii) for each fixed $y \in X$, the map $x \to B(x, y)$ is continuous.

Show that there exists a bounded linear operator $T: X \to X^*$ such that $B(x,y) = \langle Tx,y \rangle$, where $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ is the usual duality form: $\langle f, x \rangle = f(x)$. Conclude that there exists a constant C > 0 such that $B(x,y) \leq C||x|| ||y||$.

7. [10%] Let X be a Banach space and T be a bounded linear mapping of X into itself satisfying

$$||x|| \le K||Tx||$$

for all $x \in X$, for some $K \in \mathbb{R}$. Prove that the range of T is closed.

8. [10%] Prove that a bounded sequence in a separable, reflexive Banach space contains a weakly convergent subsequence.