PM1:00-4:00

1. If $1 , prove that the unit ball of <math>L^p(\mathbb{R}^n)$ is strictly convex; this means that if

$$||f||_p = ||g||_p = 1, \quad f \neq g, \quad h = \frac{1}{2}(f+g),$$

then $||h||_p < 1$. Show that this fails in $L^1(\mathbb{R}^n)$, and in $L^{\infty}(\mathbb{R}^n)$.

- 2. Prove that $W^{1,2}(\mathbb{R}^n)$ is a Hilbert space. (Recall: \mathcal{A})
- 3. Use the Fourier transform method to show that the equation

$$u_{xx} + u_{yy} + u_{zz} = -q(x, y, z),$$

where q is a continuous, positive function on \mathbb{R}^3 , has the formal solution

$$u(r) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{q(s)}{\|s - r\|} ds, \quad r = (x, y, z).$$

4. Suppose that X and Y are Banach spaces, and suppose that Λ is a linear mapping of X into Y, with the following property:

For every sequence x_n in X for which $x = \lim x_n$, and $y = \lim \Lambda x_n$ exist, it is true that $y = \Lambda x$. Prove that Λ is continuous.

- 5. Suppose that X is an infinite-dimensional normed linear space and $S = \{x \in X : ||x|| = 1\}$. Show that
 - (a) the weak closure of S is $\{x \in X : ||x|| \le 1\}$;
 - (b) $\{x \in X : ||x|| \le 1\}$ is not compact.
 - (*): V is called the x-th weak derivative of U and is denoted by $D^{\alpha}u$ if it satisfies $\int_{\mathbb{R}^{n}} \varphi v \, dx = (-1)^{n/2} \int_{\mathbb{R}^{n}} u \, D^{\alpha}\varphi \, dx, \text{ for all } \varphi \in C_{0}^{(n/2)}$