Ph.D. Qualifying Examination (2005.9.23) Algebra

Answer all the problems and show all your works.

- 1. (15%) Show that no group of order 48 is simple.
- 2. (10%) Let H be a subgroup of a finite group G with [G:H]=p, where p is the smallest prime dividing the order of G. Prove that H is normal in G. (Hint: Consider the action of G on the coset of H.)
- 3. (10%) Let R be a commutative Noetherian ring with identity. Show that R[x] is also Noetherian.
- 4. (15%) Let $A \subset R$ be two integral domains containing identity such that R is integral over A. Let P and Q be prime ideals in R with $P \subseteq Q$. Show that P = Q if $P \cap A = Q \cap A$.
- 5. (10%) Find all prime ideals in the ring $\mathbb{C}[x,y]/(xy-1)$, where \mathbb{C} is the field of all complex numbers.
- 6. (15%) Let R and S be two rings. Let M be a right R-module, N a right S-module and P a R-S-bimodule with R acting on the left and S acting on the right. Show that there is an isomorphism of abelian groups from $\operatorname{Hom}_S(M \otimes_R P, N)$ to $\operatorname{Hom}_R(M, \operatorname{Hom}_S(P, N))$.
- 7. (10%) Let \mathbb{Z}_4 is a cyclic group of order 4. We consider \mathbb{Z}_4 to be a \mathbb{Z} -module.
 - (i) (5%) Find a projective \mathbb{Z} -module P and a surjective \mathbb{Z} -homomorphism from P to \mathbb{Z}_4 .
 - (ii) (5%) Find an injective \mathbb{Z} -module J and an injective \mathbb{Z} -homomorphism from \mathbb{Z}_4 to J.
- 8. (15%) Let E be a splitting field over \mathbb{Q} of the equation $f(x) = x^4 5$, where \mathbb{Q} is the field of all rational numbers.
 - (i) (10%) Determine the Galois group of E over \mathbb{Q} .
 - (ii) (5%) Find all the intermediate fields K between E and \mathbb{Q} satisfying [E:K]=2.