-1

Master Qualifying Exam, Analysis

2005.9.23

(20%) State the monotone convergence theorem, dominated convergence theorem, Fa-
tou’s lemma, Funini’s theorem.

(10%) Show that the set of rational numbers on [0, 1] is of measure 0 and give an example
which is an uncountable measure zero set.

(10%) Give an example that a sequence of functions is convergent in measure but not
pointwise convergent.

(10%) Show that the Cantor-Lebesgue function is of bounded variation but not absolute
continuous.

. (10%) Compute the limit
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(a) (10%) Let g be a nonnegative measurable function on [0,1]. Show that
exol [ loglo(®)dt) < [ glt)ar

(b) (5%) Explain the inequality as the arithmetic mean greater than the geometric
meai.

(10%) Let {f.} be a sequence of functions in L?[0, 1], 1 < p < oo, which converge almost
everywhere to a function f in LP[0, 1], and suppose that there is a constant M such that
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| full < M for all n. For each function g in L9(0, 1] and p + .- 1, show that
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Let f, g be real-valued continuous functions defined on R and g{zx + 1) = g(x).
(a) {10%) Show that
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(b) (5%) Use this result to show that
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