- 1. (20%) State the monotone convergence theorem, dominated convergence theorem, Fatou's lemma, Funini's theorem.
- 2. (10%) Show that the set of rational numbers on [0,1] is of measure 0 and give an example which is an uncountable measure zero set.
- 3. (10%) Give an example that a sequence of functions is convergent in measure but not pointwise convergent.
- 4. (10%) Show that the Cantor-Lebesgue function is of bounded variation but not absolute continuous.
- 5. (10%) Compute the limit

$$\lim_{n \to \infty} \int_1^\infty \frac{n \cos x}{1 + n^2 x^{\frac{3}{2}}} dx.$$

6. (a) (10%) Let g be a nonnegative measurable function on [0,1]. Show that

$$\exp(\int \log(g(t))dt) \le \int g(t)dt.$$

- (b) (5%) Explain the inequality as the arithmetic mean greater than the geometric mean.
- 7. (10%) Let $\{f_n\}$ be a sequence of functions in $L^p[0,1]$, 1 , which converge almost everywhere to a function <math>f in $L^p[0,1]$, and suppose that there is a constant M such that $||f_n|| \leq M$ for all n. For each function g in $L^q[0,1]$ and $\frac{1}{p} + \frac{1}{q} = 1$, show that

$$\int_0^1 fg = \lim_{n \to \infty} \int_0^1 f_n g.$$

- 8. Let f, g be real-valued continuous functions defined on R and g(x+1) = g(x).
 - (a) (10%) Show that

$$\lim_{n \to \infty} \int_0^1 f(x)g(nx)dx = (\int_0^1 f(x)dx)(\int_0^1 g(x)dx).$$

(b) (5%) Use this result to show that

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) \sin(nx) dx = 0$$