PM 2:00 — 5:00

- 1. Let X be a random variable with finite second moment, and μ be a median of X. Prove $|EX - \mu| \le \sqrt{2 \text{Var} X}$ (10%)
- 2. Let X, Y be independent random variables with common N(0,1) distribution. Prove X + Y and X - Y are independent. (10%)
- 3. Let X, Y be iid random variables which have finite variance and if $Z_1 = X + Y$, $Z_2 = X Y$ are independent, prove that X, Y, Z_1, Z_2 are normal distributed. (10%)
- 4. Let X, Y be independent random variables. Prove X + Y is normal distributed if and only X, Y are both normal. (10%)
- 5. Prove that if X_1, X_2, \ldots, X is a martingale, then for every $\varepsilon > 0$,

$$P\{\sup_{n} |X_{n}| > \varepsilon\} \le \frac{1}{\varepsilon} \int_{\{\sup_{n} |X_{n}| > \varepsilon\}} |X| dP \le \frac{1}{\varepsilon} E|X|. \tag{10\%}$$

- 6. For sequence of r.v's $\{X_n\}$, if $\lim_{n\to\infty} ES_n = 0$ where $S_n = \sum_{i=1}^n X_i$. Prove (20%)
 - (i) $\frac{S_n ES_n}{n} \to 0$ in probability.
 - (ii) $\frac{S_n ES_n}{n}$ not necessarily converges almost surely.
- 7. Suppose $\{X_n\}$ is a sequence of iid symmetric r.v's (20%)
 - (a) Show that for a sequence $\{a_n\} \subset \mathbb{R}$, $\sum_{k=1}^{\infty} a_k X_k$ converge almost surely as $n \to \infty$, then $\sum_{k=1}^{\infty} a_k^2 < \infty$.
 - (b) Give an example to show that $\sum_{k=1}^{\infty} a_k^2 < \infty$ is not sufficient. (Hint: use $a_n = \frac{1}{n^{\alpha}}$ and X_1 with $E\left[|X_1|^{\frac{1}{\alpha}}\right] = +\infty$)
- 8. Suppose that $\{Z_n\}$ denotes the *n* coin tossing results for a fair coin. Show that there is a constant *c*, independent of *n* and *t* so that $P\{\max_{k \le n} \frac{Z_k}{\sqrt{n}} \ge t\} \le \frac{c}{t^2}$. (10%)