1. Consider the following nonlinear programming problem:

(28%)

max
$$f(x) = \chi_1^2 + (\chi_2 - 2)^2$$

s.t. $g_1(x) = (x_2 - 2) + (x_1 - 1)^3 \le 0$
 $g_2(x) = (x_1 - 1)^3 - (x_2 - 2) \le 0$
 $g_3(x) = -x_1 \le 0$
 $g_4(x) = -x_2 \le 0$

- (a) Draw the graph of the feasible domain and find out all global optimal solutions.
- (b) Draw the normal cones at (0,3) and (0,2), then draw the gradients $\nabla f(0,3)$ and $\nabla f(0,2)$. Explain the K-K-T conditions graphically at (0,3) and (0,2).
- (c) Find out the Lagrange Multipliers associated with (0,3) and (0,2) respectively.
- (d) Are the K-K-T conditions necessary or sufficient to the optimality? Does every global optimal solution in (a) satisfy the K-K-T conditions? Why?
- 2. Given the primal problem

(18%)

min
$$f(x)$$

s.t. $g(x) \le 0$
 $x \in X \subset \mathbf{R}$

where $g: \mathbb{R}^n \to \mathbb{R}^m$, X= compact, $f,g \in \mathbb{C}^1$

- (a) Show that $h(\lambda) = \inf\{f(x) + \lambda^T g(x) | x \in X\}$ is concave on \mathbb{R}^m .
- (b) Define $x(\lambda) = \{y \in \mathbb{R}^n \mid y \text{ minimizes } f(x) + \lambda^T g(x) \text{ over } X\}$. Show that, if $x \in x(\overline{\lambda})$, then g(x) is a subgradient of h at $\overline{\lambda}$.
- (c) In a linear case, if problem (P) is

$$\min_{\substack{s.t. \\ x \ge 0,}} c^t x$$

prove that the Lagrangian dual is just the dual problem of (P) in the sense of Linear Program.

3. Let X be a non-empty set in \mathbb{R}^n and $f : \mathbb{R}^n \to \mathbb{R}$. Consider the conjugate function f^* defined as follows: (18%)

$$f^*(u) = \sup\{(x,u) - f\{x\} : x \in X\}$$

(a) Interpret f^* geometrically.

(b) Let
$$f(x) = e^x$$
, $x \in \mathbb{R}$ and $g(x) = \frac{1}{p} |x|^p$, $p > 1$, $x \in \mathbb{R}$. Compute $f^*(u)$ and $g^*(u)$

- (c) In what case, $f = f^*$
- 4. This problem relates to algorithms. Let

A == steepest descent method

B = Newton's method

C == Conjugate gradient method

D = Barrier function method. E == penalty method

F = Kelley's cutting plane method.

Answer the following questions with appropreate reasons. (18%)

- (a) Which methods involve the line search?
- (b) Which methods require first-order informations of the objective function?
- (c) why can a cutting plane method be treated as a dual method?
- 5. Let $a_1 < a_2 < ... < a_m$ be m real numbers and $t_1, t_2, ... t_m$ be positive.

Define f on \mathbf{R} by

(18%)

$$f(x) = \sum_{j=1}^{m} t_j | x - a_j |$$

- (a) Show that f(x) is convex.
- (b) Show that

$$\partial f(x) = \begin{cases} \sum_{\{j: a_j < x\}t_j - \sum_{\{j: a_j > x\}t_j, & if \quad x \notin \{a_1, a_2, \dots a_m\} \\ \sum_{\{j: a_j < x\}t_j - \sum_{\{j: a_j > x\}t_j + [-t_{j0}, t_{j0}], & if \quad x = a_{j0} \end{cases}}$$

(c) Design an algorithm to minimize f.