Show all works

E: Easy, M: Moderate, D: Difficult

1.[10%] (Sept. 2008) Evaluate the integral $\int_{-\infty}^{\infty} e^{-x^2} \cos(xt) dx := I(t)$, $\lim_{t \to 0} I(t)$, and $\lim_{t \to \infty} I(t)$.

2.[10%] (Sept. 2014) Let C be the Cantor set and $\varphi(x)$ be the Cantor function. (a) Show that the Lebesque measure of C is zero. (b) Show that C is uncountable. (c) Is $\varphi(x)$ continuous? uniformly continuous? absolutely continuous? Prove it.

3.[15%] (Sept. 2008) Let $\mathbf{T}(x,y)=(e^x\cos y-1,e^x\sin y)=(u,v)$ be a transformation: $R^2\to R^2$, and f be a continuous function on R^2 with compact support. Let $J_{\mathbf{T}}$ be the Jacobian of \mathbf{T} . (a) Show that there are functions g_1 and g_2 from R^2 into R^1 such that $\mathbf{T}(x,y)=\mathbf{G_2}\circ\mathbf{G_1}(x,y)$, where $\mathbf{G_1}(x,y)=(g_1(x,y),y)$ and $\mathbf{G_2}(z,w)=(z,g_2(z,w))$. (b) Show that, for Riemann integral, $\int_{R^2}f(u,v)\,dudv=\int_{R^2}f(\mathbf{T}(x,y))\Big|J_{\mathbf{T}}(x,y)\Big|\,dxdy$. Use the result in part (a) to give a direct proof. (c) Under what conditions, does the formula in part (b) hold for Lebesgue integral?

4.[6%](Sept. 2004) Assume that p > 0 and $\int_E |f - f_k|^p dx \to 0$ as $k \to \infty$. Show that $\{f_k\}_{k=1}^{\infty}$ converges in measure on E to f.

5.[20%](Feb. 2000 and Sept. 2014) Let \mathcal{M} be the collection of Lebesgue measurable subsets of R. μ be the Lebesgue measure on (R, \mathcal{M}) , and μ_0 be the counting measure on (R, \mathcal{M}) . Define ν on (R, \mathcal{M}) by $\nu(E) = \mu_0(E \cap \{0\}) - \mu(E \cap [0, 1]) + \int_E \frac{1}{1+x^2} dx$. $(E \in \mathcal{M})$ (a) Find a Hahn decomposition of R for measure ν . (b) Find the Jordan decomposition of ν . (c) Find the Lebesgue decomposition of $|\nu|$ with respect to μ . (d) Compute the Radon-Nikodym derivative of the absolutely continuous part of $|\nu|$ with respect to μ .

6.[15%] (Sept. 2014) (a) State the Lebesgue Domination Convergence Theorem.

- (b) State the fundamental Theorems of Calculus for Riemann integral and for Lebesgue integral.
- (c) State the Riesz representation theorem of the dual of $L^p(E)$.
- (d) State a theorem for the dual of \mathbb{R}^n in Linear Algebra, that is analogous with the Riesz representation theorem of the dual of $L^2(E)$. (Hint: Compare inner products in $L^2(E)$ and in \mathbb{R}^n)
 - (e) Let f and g be absolutely continuous. Show that the product rule holds.

7.[10%] (M) Prove the following theorem: Let [a, b] be a closed, bounded interval and $1 \le p < \infty$. Suppose T is a bounded linear functional on $L^p[a, b]$. Then there is a function $g \in L^q[a, b]$, where q is the conjugate of p, for which $T(f) = \int_a^b g \cdot f$ for all $f \in L^p[a, b]$. (Hint: Fundamental Theorem of Calculus for Lebesgue integral. Do not use Riesz representation theorem.)

8.[14%] (D) Let E be a measurable set in \mathbb{R} and $1 . Assume that <math>\{f_n\} \to f$ weakly in $L^2(E)$ as $n \to \infty$. Show that

- (a) There is a subsequence $\{f_{n_k}\}$ such that $\frac{1}{k}(f_{n_1}+\cdots+f_{n_k})\to f$ strongly in $L^2(E)$ as $k\to\infty$.
- (b) In addition, we suppose that C is a closed, bounded convex subset of $L^2(E)$ and T is a continuous convex functional on C. If $\{f_n\} \subset C$, then $f \in C$. Also we have $T(f) \leq \liminf T(f_n)$.