GENERAL ANALYSIS

(E: Easy, M:Moderate, D: Difficult) PhD Qualify Exam October 12, 2018

1. (M, 20 points, 2013, 3) Let (X, M, μ) be a measure space. Assume that $f \in L^r(X)$ for some $0 < r < \infty$. Show that

 $\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$

2. (E, 15 points, 2017, 3) Let g_n and g be integrable functions, $g_n \to g$ a.e., and $|f_n| \leq g_n$, $f_n \to f$ a.e. If

 $\int g dx = \lim_{n \to \infty} \int g_n dx$

then

 $\int f dx = \lim_{n \to \infty} \int f_n dx.$

- 3. (E, 10 points) Let E be a subset of \mathbb{R} with measure zero. Show that the set $\{x^2 : x \in E\}$ also has measure zero.
- 4. (E, 15 points) Suppose that f, $\{f_k\} \in L^p$ and that $f_k \to f$ a.e., $1 \le p < \infty$. Show that $\|f_k f\|_p \to 0$ iff $\|f_k\|_p \to \|f\|_p$.
- 5. (E, 15 points) Let f_k and f be (Lebesgue) measurable on a measurable set $E \subset \mathbb{R}^n$, $|E| < \infty$. Then

 $f_k \to f$ in measure iff $\int_E \frac{|f_k - f|}{1 + |f_k - f|} dx \to 0$ as $k \to \infty$.

6. (M, 15 points, 2015, 3) Let $1 \leq p \leq \infty$, $f \in L^p(\mathbb{R}^n)$ and $g \in L^1(\mathbb{R}^n)$. Prove that $f * g \in L^p(\mathbb{R}^n)$, and $\|f * g\|_p \leq \|f\|_p \|g\|_1$,

where $(f * g)(x) = \int_{\mathbb{R}^n} f(t) g(x - t) dt$.

7. (E, 10 points) Suppose μ is a positive measure on X and $f: X \to (0, \infty)$ satisfies $\int_X f d\mu = 1$. Prove, for every $E \subset X$ with $0 < \mu(E) < \infty$, that

$$\int_{E} (\log f) \ d\mu \le \mu(E) \log \frac{1}{\mu(E)}$$

and, when 0 ,

$$\int_{E} f^{p} d\mu \le \mu \left(E\right)^{1-p}$$