Ph.D. QUALIFYING EXAM, GENERAL ANALYSIS

(E: easy; M: moderate; D: difficult)

1. (E. 2017, #6. 15 points) Let $E \subset \mathbb{R}^n$ be a measurable set with $|E| < \infty$. Define

$$N_p[f] := \left(\frac{1}{|E|} \int_E |f|^p\right)^{\frac{1}{p}}.$$

Prove that $N_p[f] \leq N_q[f]$ for any $p \leq q$.

2. (E. 2018, #5. 15 points) Prove the following statement: Suppose f_k , f are Lebesgue measurable on $E \subset \mathbb{R}^n$, $|E| < \infty$. Then

$$f_k \to f$$
 in measure if and only if $\int_E \frac{|f_k - f|}{1 + |f_k - f|} \to 0$ as $k \to \infty$.

3. (M. 2016, #6. 20 points) Let $1 \le p < \infty$ and g be an integrable function defined on [0,1]. Suppose that there exists M>0 such that

$$\Big| \int_{[0,1]} fg \Big| \le M \|f\|_{L^p}$$

for all bounded measurable functions f. Please prove that $||g||_{L^q} \leq M$ where $q = \frac{p}{p-1}$.

- 4. (D. 4.3 Wheeden&Zygmund. 20 points) Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set E, $|E| < \infty$. If $|f_k(x)| \le M_x < \infty$ for all k for each $x \in E$, show that given $\varepsilon > 0$, there exists a closed $F \subset E$ and a finite M such that $|E F| < \varepsilon$ and $|f_k(x)| \le M$ for all k and $x \in F$.
- 5. (M. 6.5 Folland. 15 points) Suppose $1 and <math>p^{-1} + q^{-1} = 1$. If T is abounded operator on L^p such that

$$\int (Tf)g = \int f(Tg)$$

for all $f,g\in L^p\cap L^q$, then T extends uniquely to a bounded operator on L^r for all $r\in [p,q].$

6. (E. 4.5 Royden. 15 points) A sequence $\{f_n\}$ of measurable function is called Cauchy sequence in measure if given $\varepsilon > 0$ there is N such that

$$m\{x \mid |f_n(x) - f_m(x)| \ge \varepsilon\} < \varepsilon$$

for all m, n > N. Show that $\{f_n\}$ converges in measure if $\{f_n\}$ is a Cauchy sequence in measure.

Date: March 14, 2019.