PhD Qualify Exam

General Analysis

(E: Easy, M: Moderate, D: Difficult)

October 18, 2017

- 1. (15 pts, M, 2008) Let (X,\mathfrak{M},μ) be a measure space. Let f be a positive integrable function on X. Prove that for each $\varepsilon>0$, there exists a $\delta>0$ such that, for any $A\in\mathfrak{M}$, if $\mu(A)\leq\delta$ then $\int_A fd\mu\leq\varepsilon$.
- 2. (10 pts, E, 2011) Let g be a nonnegative measurable function on [0,1] and $\int \log(g(t))dt$ is defined. Show that

 $exp\Big(\int_0^1 \log(g(t))dt\Big) \le \int_0^1 g(t)dt.$ 3. (15 pts, E, 2013) Let (X,\mathfrak{M},μ) be a measure space and let $\{E_n\}$ be

- 3. (15 pts, E, 2013) Let (X, \mathfrak{M}, μ) be a measure space and let $\{E_n\}$ be a sequence in \mathfrak{M} with $E_{n+1} \subseteq E_n$ foa all n. If there exists some j such that $\mu(E_j) < \infty$. Show that $\mu(\bigcap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$. Give a counterexample if $\mu(E_j) = \infty$ for all j.
- 4. (15 pts, E, 2014) Let E be a measurable set in \mathbb{R}^n . f and f_k are measurable in E. If p > 0, and $\int_E |f f_k|^p \to 0$ as $k \to \infty$, show that there is a subsequence $f_{k_j} \to f$ a.e. in E.
- 5. (15 pts, M) Let E be a measurable set in \mathbb{R}^n and $1 \leq p < \infty$. Suppose $\{f_k\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on E to the function f which belongs to $L^p(E)$. Show that $||f_k f||_{L^p(E)} \to 0$ as $k \to \infty$ if and only if $||f_k||_{L^p(E)} \to ||f||_{L^p(E)}$ as $k \to \infty$.
- 6. (15 pts, E) Let E be a Lebesgue measurable set with finite measure. For $1 \le p < \infty$, define

$$N_p[f] = \left(\frac{1}{|E|} \int_E |f|^p\right)^{1/p}.$$

Prove that if $p_1 < p_2$, then $N_{p_1}[f] \le N_{p_2}[f]$.

7. (15 pts, E) Let $f \in L^p(E) \cap L^q(E)$ with $1 \le p \le q \le \infty$ where E is a Lebesgue measurable set. Prove that $||f||_r \le ||f||_p^{\alpha} ||f||_q^{1-\alpha}$ for all $p \le r \le q$, where $\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$.