(2017 Spring) **Qualifying Examination** Subject: Mathematical Statistics

1(E, 20%). Let Z be a standard normal random variable and U be a chi-square random variable with n degree of freedom. Suppose that Z and U are independent. Please find the probability density function of $Z/\sqrt{U/n}$.

2(E, 20%). Let $X_1,...,X_n$ be independent $N(\mu,\sigma^2)$ random variables. Denote $\overline{X} = \sum_{i=1}^n X_i/n$. Prove or disprove that the random variable \overline{X} and the vectors of random variables $(X_1 - \overline{X}, X_2 - \overline{X},...,X_n - \overline{X})$ are independent.

3(E, 20%). Let $X_1, ..., X_n$ be a sequence of independent Bernoulli random variables with $P(X_i = 1) = \theta$. Prove or disprove that $T = \sum_{i=1}^n X_i$ is a sufficient statistic for θ .

4(M, 20%). Let $x_1, ..., x_n$ be independently sampled from the Poisson distribution with parameter λ . (1) Please derive the maximum likelihood estimate of λ . (2) Find the asymptotic variance of the maximum likelihood estimate. (3) Find the method of moments estimate of λ .

5(D, 20%). Let $X_1, ..., X_n$ be i.i.d. with density function $f(x \mid \theta)$, where f is differentiable. Let $T = t(X_1, ..., X_n)$ be an unbiased estimate of θ . Prove or disprove that $Var(T) \ge [nI(\theta)]^{-1}$, where $I(\theta) = \mathbb{E}\left[\frac{\partial}{\partial \theta} \ln f(x \mid \theta)\right]^2$.