Ph'D Qualifying Exam General Analysis

Oct., 2016

E:Easy, M:Moderate, D:Difficult

- 1. (15 pts, E) $\{E_k\}$ is an increasing sequence of sets in \mathbb{R}^n and $E_k \to E$. Please show that $\limsup_{k\to\infty} E_k = \liminf_{k\to\infty} E_k = E$.
- 2. (15 pts, E) Let f be defined and measurable in \mathbb{R}^n . If T is a nonsingular linear transformation of \mathbb{R}^n , show that f(Tx) is measurable.
- 3. (15 pts, M) Use Fubini's theorem to prove that

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \pi^{n/2}$$

- 4. (15 pts, E, 2014) Let E be a measurable set in R^n . f and f_k are measurable in E. $\int_E |f f_k|^2 \to 0$ as $k \to \infty$. Please prove that f_k converges to f in measure.
- 5. (20 pts, M, 2012) Please prove or disprove
 - (a) If f is strictly increasing continuous function with f'(x) = 0 a.e., then f is a constant function.
 - (b) If f is an absolutely continuous function with f'(x) = 0 a.e., then f is a constant function.
- 6. (20 pts, M, 2015) Let $1 \le p < \infty$ and g be an integrable function defined on [0, 1]. Suppose that there exists M > 0 such that

$$\left| \int_0^1 f g dx \right| \le M \|f\|_p$$

for all bounded measurable functions f. Please prove that $||g||_q \leq M$, where 1/p + 1/q = 1.