Qualifying Exam Differential Geometry

Department of Mathematics National Cheng-Kung University

March 15, 2016

- Make sure ALL electronic devices are OFF.
- You have 2 hours.
- Show ALL the work.
- Good Luck!

All manifolds are assumed to be smooth and finite dimensional.

1. The space of n matrices, $Mat(n, \mathbb{R})$, can be identified with \mathbb{R}^{n^2} in the natural way. Define $GL(n, \mathbb{R})$ to be the set of *invertible* n-matrices, and $O(n, \mathbb{R})$ to be the set of *orthogonal* matrices. Precisely,

$$GL(n, \mathbb{R}) := \{ A \in Mat(n, \mathbb{R}) \mid det A \neq 0 \},$$

$$O(n, \mathbb{R}) := \{ A \in Mat(n, \mathbb{R}) \mid AA^T = Id \}.$$

- (a) (5 points) (Easy) Prove that $GL(n,\mathbb{R})$ is a smooth manifold. What is its dimension?
- (b) (10 points) (Medium) Prove that $O(2,\mathbb{R})$ is a smooth manifold. What is its dimension?
- 2. Let ω be a smooth 1 form on a manifold M.
 - (a) (5 points) (Very Easy) State the definition for ω to be a closed 1 form.
 - (b) (10 points) (Medium) Prove that if ω is closed and M is simply connected, then given any two smooth curves $\gamma_1, \gamma_2 : [0,1] \to M$ starting and ending at the same points,

$$\int_{\gamma_1} \omega = \int_{\gamma_2} \omega.$$

- (c) (5 points) (Medium) If M is not simply connected, give an example of closed 1-form ω on some manifold M that fails to satisfy the conclusion of part (b). (Hint: consider an open subset of \mathbb{R}^2).
- 3. Given a smooth function f and p-form ω on a manifold M,
 - (a) (5 points) (Easy) Prove, using local coordinates, that

$$d(fd\omega) = df \wedge d\omega.$$

(b) (5 points) (Easy)Use the previous part to show that for 1-form ω and vector fields X, Y, we have

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]).$$

Here, [X, Y] is the $Lie\ bracket$ of vector fields.

- 4. Let M be a connected and compact manifold, N a manifold in general, and $F: M \to N$ is smooth.
 - (a) (5 points) (Easy) Prove that F is a closed map.
 - (b) (10 points) (Medium) Prove that if F is a *submersion*, then F is an open map.
 - (c) (5 points) (Easy) Prove that if F is a submersion and N is non-compact, then N must be disconnected.

5. Given $f: \mathbb{R}^n \to \mathbb{R}$ smooth. Define its gradient vector field by

$$\nabla f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial}{\partial x_i}$$

and its Laplacian by

$$\Delta f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}.$$

- (a) (5 points) (Easy) For $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(x,y) = xy, find the flow of ∇f . (Recall that for a vector field X on M, its flow is given by $\theta: M \times J \to M$ so that $\forall t \in J, \frac{\partial}{\partial t}|_{t=0}\theta(p,t) = X_p$.
- (b) (5 points) (Easy) Recall that for any tensor field θ and vector field X on M, the Lie derivative $\mathcal{L}_X \theta$ is defined in some appropriate way. For a smooth function (ie a 0 tensor) $h: \mathbb{R}^n \to \mathbb{R}$ and vector field $X = \sum_{i=1}^n X^i \frac{\partial}{\partial x_i}$, write down the coordinate representation of $\mathcal{L}_X(h)$.
- (c) (10 points) (Medium) For any smooth function h, differential forms ω and η , the followings are true
 - $\mathcal{L}_X(dh) = d(\mathcal{L}_X h)$.
 - $\mathcal{L}_X(\omega \wedge \eta) = (\mathcal{L}_X \omega) \wedge \eta + \omega \wedge (\mathcal{L}_X \eta)$

Use these to prove that for $f: \mathbb{R}^3 \to \mathbb{R}$,

$$\Delta f = 0 \Leftrightarrow \mathcal{L}_{\nabla f}(dx \wedge dy \wedge dz) = 0.$$

6. Consider inclusion

$$\iota: \mathbb{S}^n \hookrightarrow \mathbb{R}^{n+1}$$

Let (x_1, \ldots, x_n) be local coordinate of the upper hemisphere of \mathbb{S}^n (ie. $x_n > 0$) and (u_1, \ldots, u_{n+1}) be the global coordinates of \mathbb{R}^{n+1} .

- (a) (5 points) (Easy) Write out ι in the coordinates given above.
- (b) (10 points) (Easy) Let $g = \sum_{i=1}^{n+1} du_i^2$ be the Euclidean metric of \mathbb{R}^{n+1} . Write out the coordinate representation of ι^*g on the upper hemisphere.