Qualifying Exam, Oct 2015 Differential Geometry

(E: Easy, M: Moderate, D: Difficult)

- 1. Let $\omega = a(x,y)dx + b(x,y)dy$ be a smooth 1-form on \mathbb{R}^2 such that $d\omega = 0$.
 - (a) (E, 10%) Find the relation between $\frac{\partial a}{\partial y}(x,y)$ and $\frac{\partial b}{\partial x}(x,y)$.
 - (b) (M, 10%) Show that $\omega = df$ where

$$f(x,y) = \int_0^1 \{x \, a(tx,ty) + y \, b(tx,ty)\} \, dt.$$

$$[\text{Hint: } \frac{d}{dt}\left(ta(tx,ty)\right) = a(tx,ty) + tx\frac{\partial a}{\partial x}(tx,ty) + ty\frac{\partial a}{\partial y}(tx,ty).]$$

- 2. Let $GL(n,\mathbb{R})$ be the set of all invertible $n \times n$ real matrices, and let $SL(n,\mathbb{R})$ be the subset of $GL(n,\mathbb{R})$ consisting of matrices of determinant 1. We view $GL(n,\mathbb{R})$ and $SL(n,\mathbb{R})$ as subspaces of the Euclidean space \mathbb{R}^{n^2} .
 - (a) (E, 10%) Show that $GL(n, \mathbb{R})$ is a smooth manifold.
 - (b) (M, 10%) Show that $SL(n,\mathbb{R})$ is a smooth submanifold of $GL(n,\mathbb{R})$. What is the **dimension** of $SL(n,\mathbb{R})$?
- 3. Let M and N be smooth manifolds, and let $f: M \to N$ be a smooth map.
 - (a) (E, 10%) Show that if f is a submersion, then f is an **open map**.
 - (b) (E, 10%) Show that if M and N have the same dimension and f is an immersion, then f is a local diffeomorphism.
- 4. Let M be a smooth manifold. A critical point of $f \in C^{\infty}(M)$ is a point $p \in M$ such that $df_p = 0$. Let T_pM be the tangent space of M at p.
 - (a) (E, 10%) Suppose p is a critical point of f, then we define $H: T_pM \times T_pM \to \mathbb{R}$ by

$$H(v, w) = XYf(p),$$

where X, Y are smooth vector fields on M and $X_p = v$, $Y_p = w$. Show that H is well-defined, bilinear and symmetric.

(b) (M, 10%) Let $\gamma: \mathbb{R} \to M$ be a curve such that $\gamma(0) = p$ and $\gamma'(0) = v$. Show that

$$H(v,v) = \frac{d^2(f \circ \gamma)}{dt^2}(0).$$

- 5. (E, 10%) Let G be a Lie group. Show that the tangent bundle of G is trivial.
- 6. (E, 10%) Let M be a smooth compact manifold. Prove that there exists a **Riemannian metric** on M.