(E: easy, M: moderate, D: difficult)

- 1. (E, 15 pts, 2010, 3) Show that measurable sets are those which split every set (measurable or not) into pieces that are additive with respect to outer measure.
- 2. (E, 15 pts, 2007, 9) Show that every Lebesgue integrable function is the limit, almost everywhere, of a certain sequence of step functions.
- 3. (M, 20 pts, 2007, 9) 1 . Define

$$F(x) = \frac{1}{x} \int_0^x f(t)dt, \quad 0 < x < \infty$$

(a) Prove that

$$||F||_p \le \frac{p}{p-1} ||f||_p$$

- (b) Prove that the equality holds only if f = 0 a.e..
- 4. (M, 20 pts, 2010, 9) Let f be a bounded function on the closed, bounded interval [a, b]. Then f is Riemann integrable over [a, b] if and only if the set of points in [a, b] at which f fails to be continuous has measure zero.
- 5. (E, 15 pts) Prove the Minkowski inequality for 0 .
- 6. (E, 15 pts) Show that a normed linear space is complete if and only if every absolutely summable series is summable.