PhD Qualify Exam General Analysis

March 11, 2015

E: Easy, M: Moderate, D: Difficult

1. [E, 10%] (Sept. 2011) Let f be Lebesgue measurable on [0, 1]. Assume that

$$\int_0^1 [f(x)]^m dx = c, \text{ for all } m \in \mathbb{N}$$

where c is some constant. Show that $f = \chi_A$ a.e. for some $A \subset [0,1]$.

2. [M, 20%](Scpt. 2012) Determine whether the following statements are true or false. If true, prove it; if false, disprove it or give a counterexample.

Let f and f_k , $k=1,2,\cdots$ be measurable and finite a.e. in E, where $E\subset\mathbb{R}^n$ has a finite measure.

- (a) (10%) If f_k converges to f in measure, then f_k converges to f pointwise a.e.
- (b) (10%) If f_k converges to f pointwise a.e., then f_k converges to f in measure.
- 3. [M, 20%](Feb. 2006) Suppose $f \in L^1(\mathbb{R})$. Let $F(x) = \int_{\mathbb{R}} f(t) \frac{\sin xt}{t} dt$. (a) (10%) Prove that F is differentiable on \mathbb{R} and find F'(x).

 - (b) (10%) Determine whether or not F is absolutely continuous on every compact subinterval of \mathbb{R} .
- 4. [E, 15%](Sept. 2004) Let $1 , <math>f \in L^p(\mathbb{R}^n)$ and $g \in L^1(\mathbb{R}^n)$. Prove that $f * g \in L^p(\mathbb{R}^n)$, and

$$||f * g||_p \le ||f||_p ||g||_1$$

where $(f * g)(x) = \int_{\mathbb{R}^n} f(t)g(x - t)dt$.

5. [M, 25%] Let $f \in L^1(\mathbb{R}^2)$ and Σ be the Lebesgue σ -algebra. For all $A \in \Sigma$, define $\mu_f(A) = \int_A |f| dx.$

(a) (10%) Show that μ_f is a finite measure on (\mathbb{R}^2, Σ) .

(b) (15%) Suppose a set $E \subset \mathbb{R}^2$ has outer measure $|E|_e < \infty$ and that for every $x \in E$, there exists a cube Q_x containing x such that

$$\mu_f(Q_x) \ge 0.25|Q_x|, \quad x \in E.$$

Show that $|E|_e \leq 100 \mu_f(\mathbb{R}^2)$.

6. [E, 10%] Fix $p \in (1, \infty)$. Find the maximal set $A \subset \mathbb{R}$ such that the following statement is true.

$$\alpha \in A \text{ and } f \in L^p([1,\infty)) \quad \Rightarrow \quad \Big| \int_1^\infty \frac{f(x)}{x^\alpha} dx \Big| < \infty.$$