PhD Qualify Exam in Numerical Analysis March 11, 2015

1. (Average)

- (a) (5 %) Show that the nontrivial fixed point of the equation $4x = x^3, x \in [0, \infty)$ is unstable, that is, you cannot find the nontrivial fixed point by using the fixed point iteration $4x_{k+1} = x_k^3$ with arbitrary $x_0 \neq 2 \in [0, \infty)$.
- (b) (10 %) Please develop a new fixed iteration method such that the nontrivial fixed point of the equation $4x = x^3, x \in [0, \infty)$ is stable.

2. (Average)

Consider the heat equation with Dirichlet boundary conditions:

$$u_t = u_{xx}$$
 for $0 < x < 1$, $0 < t < T$,
 $u(0,t) = 0$, for $0 < t < T$,
 $u(1,t) = 0$, for $0 < t < T$.

We attempt to solve the problem using a finite difference scheme on a discrete with grid points (x_i, t_n) where $x_i = ih$, $t_n = nk$. Here h = 1/(m+1) is the mesh spacing on the x-axis and k is the time step. Let $U_i^n \approx u(x_i, t_n)$ represent the numerical solution at grid point (x_i, t_n) .

The finite difference is

$$U_i^{n+1} = U_i^n + \frac{k}{h^2} (U_{i-1}^n - 2U_i^n + U_{i+1}^n),$$
 for i=1,..., m,
 $U_0^n = 0, \quad U_{m+1}^n = 0.$

- (a) (10 %) Determine the order of accuracy of this method (in both space and time).
- (b) (10 %) Suppose we take $k=\lambda h^2$ for some fixed $\lambda>0$ and refine the grid. Show that this method is stable for $0<\lambda\leq 1/2$ and hence convergent.
- (c) (5 %) Based on the CFL Condition, a numerical method can be convergent only if its numerical domain of dependence contains the true domain of dependence of the PDE, at least in the limit as k and h go to zero.

What is the domain of dependence of the heat equation? Does this explicit scheme satisfy the CFL condition? 3. (Easy) (10 %) Show that if u(x) is a function that interpolates f(x) at $x_0, x_1, \ldots, x_{n-1}$ and v(x) is a function that interpolates f(x) at x_1, x_2, \ldots, x_n then the function w(x) given by

$$w(x) = \frac{(x_n - x)u(x) + (x - x_0)v(x)}{x_n - x_0}$$

interpolates f(x) at x_0, x_1, \ldots, x_n .

4. (Average) A sequence $\{p_n\}$ is said to be superlinearly convergent to p if

$$\lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|} = 0.$$

- (a) (10 %) Show that if $p_n \to p$ of order α for $\alpha > 1$, then the sequence $\{p_n\}$ is certainly superlinearly convergent to p.
- (b) (5 %) Show that $\{p_n = \frac{1}{n^n}\}$ is superlinearly convergent to 0, but does not converge to 0 of any order α for $\alpha > 1$.
- 5. (Average) Let $A=\begin{bmatrix}a&a-\varepsilon\\2(a+\varepsilon)&2a\end{bmatrix}$ where $a\approx O(1)$ and ε is sufficiently small.
 - (a) (5 %) Find A^{-1} .
 - (b) (10 %) Choose b, δb , x and δx such that

$$Ax = b,$$
 $A(x + \delta x) = b + \delta b,$

and $\frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}}$ is small, but $\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}}$ is large.

(c) (10 %) Choose b, δb , x and δx such that

$$Ax = b,$$
 $A(x + \delta x) = b + \delta b,$

and $\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}}$ is small, but $\frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}}$ is large.

6. (Easy) (10 %) Show that there is a unique quadratic polynomial $p_2(x)$ satisfying the conditions

$$p_2(0) = a_0, \quad p_2(1) = a_1 \text{ and } \int_0^1 p_2(x) dx = \bar{a}$$

with given a_0 , a_1 and $\bar{a} \in \mathbb{R}$.