Show all works

E: Easy, M:Moderate, D: Difficult

1.[10%] (Sept. 2008) Evaluate the integral $\int_{-\infty}^{\infty} e^{-x^2} \cos(xt) dx$.

2.[20%] [E] Let C be the Cantor set and $\varphi(x)$ be the Cantor function. (a) State the definition of the Cantor set. (b) Show that the Lebesque measure of C is zero, that is m(C) = 0. (c) Show that C is uncountable. (d) State the definition of the Cantor function $\varphi(x)$. (e) Is $\varphi(x)$ continuous? uniformly continuous? absolutely continuous? Prove your assertion. (f) Show that C + C = [0, 2]. (g) Using the definition to find the Hausdorff measure of C.

3.[20%] (Sept. 2008) Let $\mathbf{T}(x,y) = (e^x \cos y - 1, e^x \sin y) = (u,v)$ be a transformation: $R^2 \to R^2$, and f be a continuous function on R^2 with compact support. Let $J_{\mathbf{T}}$ be the Jacobian of \mathbf{T} . (a) Show that there are functions g_1 and g_2 from R^2 into R^1 such that $\mathbf{T}(x,y) = \mathbf{G_2} \circ \mathbf{G_1}(x,y)$, where $\mathbf{G_1}(x,y) = (g_1(x,y),y)$ and $\mathbf{G_2}(z,w) = (z,g_2(z,w))$. (b) Show that, for Riemann integral, $\int_{R^2} f(u,v) \, du dv = \int_{R^2} f(\mathbf{T}(x,y)) |J_{\mathbf{T}}(x,y)| \, dx dy$. Use the result in part (a) to give a direct proof. (c) Under what conditions, does the formula in part (b) hold for Lebesgue integral?

4.[10%](Sept. 2004) Assume that p > 0 and $\int_E |f - f_k|^p dx \to 0$ as $k \to \infty$. Show that $\{f_k\}_{k=1}^{\infty}$ converges in measure on E to f.

5.[10%](Feb. 2007) Let $1 , <math>f \in L^p(0,\infty)$, $F(x) = \frac{1}{x} \int_0^x f(t) dt$, and $0 < x < \infty$. (a) Prove that $||F||_p \le \frac{p}{p-1}||f||_p$. (b) Prove that the equality holds only if f = 0 a.e. (c) What can you say about p = 1 and $p = \infty$?

6.[20%](Feb. 2000) Let \mathcal{M} be the collection of Lebesgue measurable subsets of R. μ be the Lebesgue measure on (R, \mathcal{M}) , and μ_0 be the counting measure on (R, \mathcal{M}) . Define ν on (R, \mathcal{M}) by $\nu(E) = \mu_0(E \cap \{0\}) - \mu(E \cap [0,1]) + \int_E \frac{1}{1+x^2} dx$. $(E \in \mathcal{M})$ (a) Find a Hahn decomposition of R for measure ν . (b) Find the Jordan decomposition of ν . (c) Find the Lebesgue decomposition of $|\nu|$ with respect to μ . (d) Compute the Radon-Nikodym derivative of the absolutely continuous part of $|\nu|$ with respect to μ .

7.[10%] (a) State the Riesz representation theorem of the dual of $L^p(E)$.

- (b) State the Radon-Nikodym Theorem.
- (c) State the Riesz representation theorem of the dual of $L^p(X,\mu)$.
- (d) State the Riesz representation theorem of the dual of $C(X, \mu)$.