PhD Qualify Exam, PDE, Mar. 02, 2012

Show all works

E: easy, M: moderate, D: difficult, O: old exam

- 1.(O) Solve the wave equation for infinite vibrating string $u_{tt} = c^2(x)u_{xx}$, where $c(x) = \begin{cases} c_1, & x < 0. \\ c_2, & x > 0. \end{cases}$ Let a wave $u(x,t) = f(x-c_1t)$ come in from the left. Thus the initial conditions are u(x,0) = f(x) and $u_t(x,0) = -c_1f'(x)$. Assume that u(x,t) and $u_x(x,t)$ are continuous everywhere. Also give an interpretation for the solution you find.
- **2.**(O) Let $u, v \in C^1(\overline{\Omega})$ be conjugate harmonic functions, i.e., $u_x = v_y$ and $u_y = -v_x$, in a simply connected domain Ω with C^1 boundary in R^2 . Show that on the boundary curve $\partial \Omega$, $\frac{du}{dn} = \frac{dv}{ds}$, $\frac{dv}{dn} = -\frac{du}{ds}$, where $\frac{d}{dn}$ denotes differentiation in the direction of the outer normal and $\frac{d}{ds}$ differentiation in the counter-clockwise tangential direction. Show that these relations can be used to reduce the Neumann problem for u to the Dirichlet problem for v.
- **3.**(O) Let $\Omega \subset R^n$ be open. Show that if there exists a function $u \in C^2(\overline{\Omega})$ vanishing on $\partial\Omega$ for which the quotient $\frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} u^2}$ reaches its infimum λ , then u is an eigenfunction for the eigenvalue λ , so that $\Delta u + \lambda u = 0$ in Ω . Let us call them λ_1 and u_1 . How do we find λ_2 and u_2 ? Give an example of eigenvalue problem and find $\lim_{n \to \infty} \lambda_n$ in your example.
- **4.(a)**(O) Let u be a solution of the wave equation in all of $R^3 \times R$. Suppose that a > 0 and that $u(\mathbf{x}, 0) = u_t(\mathbf{x}, 0) = 0$ for $|\mathbf{x}| \ge a$. Show that $u(\mathbf{x}, t) = 0$ in the double cone $|\mathbf{x}| \le |t| a$ for $|t| \ge a$. [10%]
 - (b)(E) Answer the same question for the wave equation in $R^2 \times R$. [5%]
- (c)(M) Find the fundamental solution (or Riemann function, or Green's function, or source function) $S(\mathbf{x},t) \text{ for the wave equation and the solution } u \text{ of } \begin{cases} u_{tt} \Delta u = f(\mathbf{x},t), \ \mathbf{x} \in R^3, \ t \in R, \\ u(\mathbf{x},0) = g(\mathbf{x}), \ u_t(\mathbf{x},0) = h(\mathbf{x}), \ \mathbf{x} \in R^3, \end{cases} \text{ in terms}$ of S, f, g, and h. [10%]
 - (d)(M) Use Fourier transform to find the solution $u(\mathbf{x},t)$ in terms of $\widehat{f}(\xi,t)$, $\widehat{g}(\xi)$, and $\widehat{h}(\xi)$. [5%]
 - 5. In this problem set we always assume that the Neumann function H exists.
- (a)(E) Analogous to the Green's function G, please state the definition of the Neumann function H(x,y) for the operator $-\Delta$ and the domain $D \in \mathbb{R}^2$ at the point $\mathbf{x}_0 \in D$. [5%]
 - **(b)**(M) Find the solution of the problem $\begin{cases} \Delta u = f, \text{ in } D \\ \frac{\partial u}{\partial n} = h, \text{ on } \partial D. \end{cases}$ (Hint: Use the Green's Identities.) [5%]
- (c)(D) Solve the Neumann problem in the half-plane $\begin{cases} \Delta u = f, \text{ in } \{y > 0\}, \\ \frac{\partial u}{\partial n} = h, \text{ on } \{y = 0\}, \end{cases}$ with u bounded at ∞ . (Hint: Consider the problem satisfied by $v = \frac{\partial u}{\partial u}$.)

6.(M) Find the solution for the diffusion equation on the half-line: $\begin{cases} u_t - u_{xx} = f(x,t), \\ u(x,0) = g(x), & x > 0, t > 0, \\ u(0,t) = h(t), \end{cases}$ where g(0) = h(0) = 0.

7.(D) Find a traveling wave solution of $u_t + u_{xxx} + 6uu_x = 0$ $(-\infty < x < \infty)$, that is, u(x,t) = f(x-ct). Also assume that f(x), f'(x), f''(x) tend to 0 as x tends to $\pm \infty$. (Hing: $f(x) = \frac{1}{2}c \operatorname{sech}^2\left[\frac{1}{2}\sqrt{c}(x-x_0)\right]$, where x_0 is an integration constant and c the wave speed.)

Figure 1: