Algebra Qualifying Exam

March 2012

 $\mathbb{Z}=$ integers. $\mathbb{Q}=$ rational numbers. $\mathbb{C}=$ complex numbers. The level of difficulty of the problems is indicated by the number of * with one * indicates the easier problems.

- 1. * Determine whether each statement below is true or false. If true, give a brief explanation. If false, provide a counterexample.
 - (a) (5 points) All subgroups of a direct product $G \times H$ of groups G and H are of the form $G' \times H'$ for $G' \leq G$ and $H' \leq H$.
 - (b) (5 points) An Artinian integral domain is a field.
 - (c) (5 points) Every algebraic extension of a finite field is finite.
 - (d) (5 points) If R is a PID, then its Jacobson radical J(R) is zero. Recall that J(R) is the intersection of all maximal ideals of R.
- 2. (10 points) * Show that $\mathbb{Z}[\sqrt{-5}] = \{a + ib\sqrt{5} \mid a, b \in \mathbb{Z}\}\$ is not a unique factorization domain.
- 3. * Let *E* be the splitting field over \mathbb{Q} of the equation $x^4 5$.
 - (a) (10 points) Determine the Galois group of E over \mathbb{Q} .
 - (b) (5 points) Final all the intermediate fields K between E and \mathbb{Q} satisfying [E:K]=2.
- 4. * Let X be a topological space. Consider the ring R(X) of continuous real-valued functions on X. The ring structure is given by point-wise addition and multiplication.
 - (a) (5 points) Show that for each $x \in X$ the set

$$M_x = \{ f \in R(X) \mid f(x) = 0 \}$$

is a maximal ideal in R(X).

- (b) (5 points) Show that if X is compact, that is, every open covers of X has a finite subcover, then every maximal ideal in R(X) is equal to M_X for some $X \in X$.
- 5. (15 points) ** Let V be a finite dimensional vector space over \mathbb{C} . Let $\phi: V \times V \to \mathbb{C}$ be a bilinear map satisfying $\phi(x,x) = 0$ for all $x \in V$. Assume that for any nonzero element $x \in V$, there is an element $y \in V$ such that $\phi(x,y) \neq 0$. Show that the dimension of V is even.
- 6. (15 points) ** Let \mathbb{F}_q be the finite field with q elements and let $M_2(\mathbb{F}_q)$ be the ring of 2×2 matrices over \mathbb{F}_q . Determine the number of nonzero nilpotent matrices in $M_2(\mathbb{F}_q)$ as a function of q.
- 7. (15 points) *** Let $p \neq q$ be prime numbers. Prove that no group of order p^2q is simple.

This exam has 7 questions, for a total of 100 points.