國立成功大學應用數學所 數值分析 博士班資格考 March, 4, 2011

1. A forward-difference formula for $f'(x_0)$ can be expressed by

$$f'(x_0) = \frac{1}{h} \left[f(x_0 + h) - f(x_0) \right] - \frac{h}{2} f''(x_0) - \frac{h^2}{6} f'''(x_0) + O(h^3)$$

Use extrapolation to derive an $O(h^3)$ formula for $f'(x_0)$. (10%)

2. Suppose that f(x) is a real-valued function having roots in a certain real interval. For finding a real root of f(x), there is a well-known iterative method, named the secant method, which can be described by

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}.$$

Show that the convergence of the secant method is of order $\alpha = \frac{1+\sqrt{5}}{2}$.

- 3. Let $A(\epsilon) \in \mathbb{R}^{n \times n}$ be a real matrix function of the real variable ϵ , that is, each element of matrix $A(\epsilon)$ is a function of ϵ . Show that the eigenvector $x(\epsilon)$ corresponding to a multiple eigenvalue $\lambda(\epsilon)$ can be not differentiable with respect to ϵ whenever all elements of matrix $A(\epsilon)$ and the eigenvalue $\lambda(\epsilon)$ are differentiable. (10%)
- 4. Show that the quadrature formula $Q(P) = \sum_{i=1}^{n} c_i P(x_i)$ cannot have degree of precision greater than 2n-1, regardless of the choice of c_1, \ldots, c_n , and x_1, \ldots, x_n . (15%)
- 5. Consider the square linear system Ax = b. Let D be diagonal consisting of the diagonals of A. The parametric Jacobi method, called the relaxation of Jacobi iteration (JOR), is expressed by

$$x_{k+1} = x_k - \omega D^{-1} (Ax_k - b).$$

Show that if Jacobi iteration converges then JOR converges for 0 < $\omega \leq$ 1. $_{(10\%)}$

- 6. Suppose the square linear system Ax = b has been solved via the partial pivoting factorization PA = LU. Assume t-digit, base $\beta = 10$ floating point arithmetic is used and the condition number of A, $\kappa_{\infty}(A)$, is about 10^q .
 - a.) Estimate relative error of computed solution. (5%)
 - b.) Can you give any strategy (a numerical method) to improve the accuracy of the numerical solution by using the same partial pivoting LU-factorization? (10%)
 - c.) Can you give any strategy to improve the condition number of A so that the computed solution is more accurate? (10%)
- 7. Consider the initial-value problem

$$y' = f(t, y)$$
, for $a \le t \le b$ with $y(a) = \alpha$

Let

$$w_0 = \alpha$$

 $w_{i+1} = w_i + h\phi(t_i, w_i, h)$ for $i > 0$,

and

$$\widetilde{w}_0 = \alpha$$
 $\widetilde{w}_{i+1} = \widetilde{w}_i + h\widetilde{\phi}(t_i, \widetilde{w}_i, h) \text{ for } i > 0,$

give two one-step methods for approximating solution of y(t) with local truncation error $\tau_{i+1}(h) = O(h^n)$ and $\tilde{\tau}_{i+1}(h) = O(h^{n+1})$, respectively, i.e.,

$$y(t_{i+1}) = y(t_i) + h\phi(t_i, y(t_i), h) + O(h^{n+1})$$

and

$$y(t_{i+1}) = y(t_i) + h\widetilde{\phi}(t_i, y(t_i), h) + O(h^{n+2}).$$

Please use these two methods to construct an adaptive step-size control method for the considering initial-value problem. (15%)