國立成功大學九十六學年度碩士班招生考試試題

共2頁,第/頁

編號: 47 系所:數學系應用數學 科目:高等微積分

本試題是否可以使用計算機: □可使用 , □不可使用 (請命題老師勾選)

1. If A is any subset of \mathbb{R}^p , let A° be the interior of A and A^{-} be the closure of A. Suppose $B \subset \mathbb{R}^p$. Prove or disprove the following statements:

- (a) (5 points) A and A^- have the same interiors.
- (b) (5 points) A and A° have the same closure.
- (c) (5 points) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
- (d) (5 points) $(A \cap B)^- = A^- \cap B^-$.
- (e) (5 points) A° can be written as the union of a countable collection of open balls.
- 2. Let $\{f_n\}$ be a sequence of continuous functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q such that $\{f_n\}$ converges uniformly to f on D, and let $\{x_n\} \subset \mathbb{R}^p$ be a sequence converges to $x \in D$.
 - (a) (8 points) Show that $\{f_n(x_n)\}\$ converges to f(x).
 - (b) (7 points) Let p = q = 1 and $f_n(x) = x^n$, $x_n = 1 \frac{1}{n}$, D = [0, 1]. Show that $\{f_n(x_n)\}$ does not converge to f(x). Why?
- 3. (a) (10 points) Show that the maximum of $f(x_1, \ldots, x_p) = (x_1 x_2 \cdots x_p)^2$ subject to the constraint $x_1^2 + \cdots + x_p^2 = 1$ is equal to $1/p^p$.
 - (b) (5 points) Use (a) to prove that

$$|y_1y_2\cdots y_p|\leq \frac{\|y\|^p}{p^{p/2}}, \quad y\in\mathbb{R}^p.$$

4. Let $F: \mathbb{R}^5 \to \mathbb{R}^2$ be defined by

$$F(u, v, w, x, y) = (uy + vx + w + x^{2}, uvw + x + y),$$

and P = (2, 1, 0, 2, -3).

- (a) (5 points) Show that F is not a one-one map around a neighborhood of P.
- (b) (5 points) Let $(x, y) = \varphi(u, v, w)$ satisfy the equation F(u, v, w, x, y) = (0, -1) near the point P. Compute $D\varphi(2, 1, 0)$.
- 5. (10 points) If $z = e^x \cos y$, while x and y are implicit functions of t defined by the equations

$$x^3 + e^x - t^2 - t = 1$$
, $yt^2 + y^2t - t + y = 0$,

then compute $\frac{dz}{dt}$ at t=0.

共之頁,第2頁

國立成功大學九十六學年度碩士班招生考試試題

編號:

47 系所:數學系應用數學

科目:高等微積分

本試題是否可以使用計算機: □可使用 , □不可使用 (請命題老師勾選)

6. (10 points) Consider the infinite integral with parameter t

$$\int_0^\infty e^{-tx}\frac{\sin x}{x}dx, \text{ for } t \ge 0,$$

where we interpret the integrand to be 1 for x = 0. Show that for each $t \ge 0$ the infinite integral converges and the convergence is uniform.

- 7. Let $(u, v) = (e^x \cos y, e^x \sin y)$ be a transformation mapping points in the xy-plane to points in the uv-plane and $R_{xy} = \{0 \le x \le 1, 0 \le y \le \frac{\pi}{2}\}$.
 - (a) (5 points) Show that the transformation defines a one-to-one mapping of the rectangle R_{xy} onto a region R_{uv} of the uv-plane. Draw the picture of R_{uv} .
 - (b) (10 points) Express (but do NOT integrate) the double integral

$$\int \int_{R_{xy}} \frac{e^{2x}}{1 + e^{4x} \cos^2 y \sin^2 y} dx dy$$

as an iterated integral in u, v.