1. (15 pts.) Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence of positive numbers. Show that

$$\overline{\lim_{n\to+\infty}}\sqrt[n]{a_n} \le \overline{\lim_{n\to+\infty}} \frac{a_{n+1}}{a_n}.$$

- 2. Suppose $f:[a,b] \to \mathbb{R}$ is a \mathcal{C}^1 injection.
 - (a).(7 pts.) Show that $\int_a^b f(x)dx + \int_{f(a)}^{f(b)} f^{-1}(y)dy = bf(b) af(a)$.
 - (b).(7 pts.) If $f(x) \ge 0, \forall x \in [a, b]$, give a geometric interpretation for the formula in (a).
 - (c).(6 pts.) Evaluate $\int_0^1 \left((x-1)^{\frac{1}{3}} + 1 \right)^{\frac{1}{2}} dx$.
- 3. (15 pts.) Suppose E is a nonempty compact subset of \mathbb{R}^n and $f, g : \mathbb{R}^n \to \mathbb{R}$ are C^1 such that f = g on the boundary of E. Show that there is a point $\mathbf{x_0} \in E$ such that $\nabla f(\mathbf{x_0}) = \nabla g(\mathbf{x_0})$.
- 4. (15 pts.) If $\{f_n\}_{n\in\mathbb{N}}$ converges to f uniformly on every closed subinterval of (0,1), does it follow that $\{f_n\}_{n\in\mathbb{N}}$ converges to f uniformly on (0,1)? Support your statement with either a proof or a counterexample.
- 5. (a).(8 pts.) State the Implicit Function Theorem.
 - (b).(7 pts.) Decide whether it is possible to solve the pair of equations

$$xy^{2} + xzu + yv^{2} - 3 = 0$$
$$u^{3}yz + 2xv - u^{2}v^{2} - 2 = 0$$

for u and v as \mathcal{C}^1 functions of (x,y,z) in a neighborhood of the points (u,v)=(1,1) and (x,y,z)=(1,1,1).

- 6. For any $n \in \mathbb{N}$, let $a_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \ln n$.
 - (a).(10 pts.) Show that $\{a_n\}_{n\in\mathbb{N}}$ is convergent to γ for some $\gamma\in\mathbb{R}$.
 - (b) (10 pts.) Express $1 + \frac{1}{2} + \cdots + \frac{1}{n}$ as $1 + \frac{1}{2} + \cdots + \frac{1}{n} = \gamma + \ln n + \varepsilon_n$ to evaluate $\sum_{k=1}^{+\infty} \frac{1}{k(2k-1)}.$