⑨ 學年度 國立成功大學應用軟學 為 高等鐵旗分 試題 共 | 頁 所 高等鐵旗分 試題 第 | 頁

- 1. [10%] Find the extreme points (x, y, z) of the function f(x, y, z) = x + y + z subject to the conditions $x^2 + y^2 = 2$ and x + z = 1.
- 2. [8%] Evaluate the definite integral:

$$\iint_A e^{-x^2} \, dx \, dy$$

where A is the triangle on the xy-plane with vertices (0,0), (1,0) and (1,1).

3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that the closure of the set $\{x \mid f(x) \neq 0\}$ is compact. Define $O(f, x_0) = \inf\{\sup\{|f(x_1) - f(x_2)| \mid x_1, x_2 \in U\} \mid U \text{ is a neighborhood of } x_0\}$

where x_0 is a point in \mathbb{R}^n and "inf" is taken over all neighborhoods U of x_0 .

- (i) [4%] Define $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = \sin \frac{1}{x}$ for $x \neq 0$ and g(0) = 0. Find O(g, 0).
- (ii) [4%] Show that if f is continuous at x_0 , then $O(f, x_0) = 0$.
- (iii) [8%] Define $D_{\epsilon} = \{ x \in \mathbb{R}^n \mid O(f, x) \geq \epsilon \}$ for $\epsilon > 0$. Show that D_{ϵ} is a compact set in \mathbb{R}^n .
- 4. [10%] Define $r_k(x) = \frac{n!}{k!(n-k)!}x^k(1-x)^{n-k}$. Show that $\sum_{k=0}^n r_k(x) = 1$ and $\sum_{k=0}^n kr_k(x) = nx$.
- 5. [10%] A function $f:[a,b] \to \mathbf{R}$ is said to be *integrable* if for any $\epsilon > 0$, there is a partition P of [a,b] such that $U(f,P) L(f,P) < \epsilon$ where U(f,P) denotes the upper sum and L(f,P) denotes the lower sum for P. Show that if f is continuous on [a,b], then f is integrable. (Note: You are not allowed to apply Lebesgue's theorem.)
- 6. Define $f_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ for $x \in \mathbf{R}$.
 - (i) [6%] Show that $\lim_{n\to\infty} f_n(x)$ exists for every $x\in\mathbb{R}$ i.e., $f_n(x)$ converges at every $x\in\mathbb{R}$.
 - (ii) [6%] Let $\exp(x) = \lim_{n\to\infty} f_n(x)$ for $x \in \mathbb{R}$. Show that the convergence $f_n(x) \to \exp(x)$ is uniformly on the open interval (-r,r) for any r > 0. Does $f_n(x)$ converge to $\exp(x)$ uniformly on $(-\infty,\infty)$? Why or why not?
- (iii) [8%] Show that $\frac{d}{dx} \exp(x) = \exp(x)$.
- 7. A map $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be differentiable at a point $x_0 \in \mathbb{R}^n$ if there is a linear map $Df(x_0): \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - \mathbf{D}f(x_0)(x - x_0)\|}{\|x - x_0\|} = 0.$$

- (i) [4%] Suppose that $g: \mathbb{R} \to \mathbb{R}$ is given by $g(x) = x^2$. Find $\mathbb{D}g(2)$.
- (ii) [4%] Suppose that $||f(x)|| \le M||x||^2$ for all $x \in \mathbb{R}^n$ where M is a constant. Show that f is differentiable at $x_0 = 0$ and Df(0) = 0.
- (iii) [6%] Suppose that both f, g are differentiable at x_0 . Show that f + g is differentiable at x_0 and $D(f + g)(x_0) = Df(x_0) + Dg(x_0)$.
- 8. A brief explanation is required for this problem.
 - (i) [4%] Give an example of a continuous function f and a closed set A in the domain of f such that f(A) is not closed.
- (ii) [4%] Give an example of a real-valued differentiable function f which is uniformly continuous on its domain but its derivative is unbounded.
- (ii) [4%] Give an example of non-empty closed sets I_k in R for $k = 1, 2, 3, \ldots$ such that $I_1 \supset I_2 \supset I_3 \supset \cdots$ and $\bigcap_{k=1}^{\infty} I_k = \emptyset$.