Please work out all six problems.

1.(20%) Let y_1 and y_2 be two solutions of the second order differential equation y'' + p(x)y' + q(x)y = 0 on an open interval I, where p(x) and q(x) are continuous in I. Show that (a) if y_1 and y_2 are linear dependent, then the Wronskian of y_1 and y_2 $W(y_1, y_2) \equiv 0$ on I; (b) if y_1 and y_2 are linear independent, then the Wronskian $W(y_1, y_2) \neq 0$ at each point of I.

2.(20%) Show that the initial value problem

$$\begin{cases} y''(x) = -y^3(x) \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

admits a unique solution defined for every $x \in \mathbb{R}$. Also, show that such a solution is a periodic function.

3.(20%) Let a(t) be a real-valued continuous function on $[0, \infty)$ with

$$\int_0^\infty |a(t)|dt < \infty.$$

Prove that the solution to the following initial value problem

$$\begin{cases} y''(t) + y(t) = a(t)y(t) \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

is bounded on $[0, \infty)$.

4.(20%) Solve the differential equation

$$y = xy' + (y')^2$$
 or $y = xp + p^2$

where p = y' by differentiating the equation with respect to x. You need to find the general solution and all singular solutions.

5.(10%) Let x(t), y(t) be the solution of

$$\begin{cases} x' = y + x^2 \\ y' = x + y^2 \end{cases}$$

with the given initial condition $(x(t_0), y(t_0))$. Assume that $x(t_0) \neq y(t_0)$. Then show that x(t) is never equal to y(t) for all t.

6.(10%) Show that all solutions x(t), y(t) of

$$\begin{cases} x' = y(e^x - 1) \\ y' = x + e^y \end{cases}$$

which start in the right half plane (x > 0) must remain there for all time.