86 學年度 國立成功大學應數 (甲)所 機率論 試題 第 / 頁

- 1. Let X be a discrete r.v. with density $f(x) = 2^{-x}$, x = 1, 2, ...
 - (a) Find EX. (6%)
 - (b) Let $Y = g \circ X$, where $g(n) = \frac{(-1)^{n+1}2^n}{n}$. Does EY exist?

 Justify your answer. (6%)
- 2. Consider r.v. $X \sim N(0,1)$ and let $Y = e^X$.
 - (a) Find the *n*th moment of Y, EY^n . (6%)
 - (b) Does the moment generating function of Y exist? Justify your answer. (6%)
- 3. Consider the discrete probability space with sample space $S=\{0,1\}$ and equal probability mass $\frac{1}{2}$ at each point in S. Define

$$X_n(s) = \begin{cases} 0 & \text{if } s = 0 \\ 1 & \text{if } s = 1, \quad n = 1, 2, \dots, \end{cases}$$

$$X(s) = \begin{cases} 1 & \text{if } s = 0 \\ 0 & \text{if } s = 1. \end{cases}$$

- (a) Does X_n converge in distribution to X? Justify your answer. (7%)
- (b) Does X_n converge in probability to X? Justify your answer. (7%)
- (c) Does X_n converge in the pth mean to X? Justify your answer. (7%)
- 4. Let X be any r.v., and suppose that the moment generating function of X, $M(t) = Ee^{tX}$, exists for every t > 0. Show that for any t > 0,

$$P\{tX > s^2 + \log M(t)\} < e^{-s^2}.$$
 (10%)

- 5. Let $X_n \xrightarrow{P} X$ and g be a continuous function defined on \mathbb{R} . Show that $g(X_n) \xrightarrow{P} g(X)$ as $n \to +\infty$. (20%)
- 6. Let X_1, \ldots, X_n be independent and identically distributed as Uniform (0, a), a > 0, and let $X_{(1)}, \ldots, X_{(n)}$ denote the order statistics. Define $R = X_{(n)} X_{(1)}$ and $V = \frac{(X_{(1)} + X_{(n)})}{2}$.
 - (a) Find the joint p.d.f. of (R, V). (10%)
 - (b) What is the distribution of $\frac{R}{a}$? (8%)
 - (c) Find the marginal p.d.f. of V. (7%)