PROBABILITY

- 1. Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables with the distribution $P(X_n = 1) = p, P(X_n = 0) = 1 - p.$ Define $T: \Omega \to N \cup \{+\infty\}$ by $T(\omega) = \inf\{n \mid \alpha \in \mathbb{N} \mid \beta \in \mathbb{N} \}$ $X_n(\omega) = 1$, if $\{n \mid X_n(\omega) = 1\} \neq \emptyset$ and $T(\omega) = +\infty$, otherwise. Find $P(T = +\infty)$.
- 2. Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables uniformly distributed on [0,1]. Define $Z_n = \min (X_1, X_2, \dots, X_n)$. Does the sequence $(nZ_n)_{n\geq 1}$ converge in distribution ? Why? (16%)
- 3. Let $(X_n)_{n\geq 1}$ be a sequence of random variables such that $P\left(X_n=\frac{k}{n}\right)=\frac{1}{n}, 1\leq k\leq n$. Does it converge in distribution? Why? (16%)
- 4. Let $X_{1,}X_{2,}\cdots,X_{m}$ be m independent random variables with values in $N\cup\{0\}$ and with a common distribution $P(X_i = k) = p_k (k \ge 0)$. Define

$$\gamma_n = \sum_{k=n}^{\infty} p_k$$

Show that $E[\min(X_{1,}X_{2,}\cdots,X_{m})] = \sum_{n=1}^{\infty} \gamma_{n}^{m}$.

(16%)

5. Use the methods in the probability theory to find

$$\lim_{n \to +\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} \tag{16\%}$$

- $\lim_{n\to+\infty}e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!} \qquad (16\%)$ 6. In probability space (Ω,β,P) , let $\Omega=[0,1]$, $\beta=B$ over field, P=L e besque measure, $X(\omega)=\sin{(2\pi\omega)}$ and $Y(\omega)=\cos{(2\pi\omega)}$ where $\omega\in[0,1]$.
 - (a) Are X and Y uncorrelated?

(10%)

(b) Are X and Y independent?

(10%)