國立成功大學八十三學年度應數所考試(機率論 試題)第/頁

Probability

1. (10%) Find the expectation and variance of the random variable X if the distribution function of X is given by

$$F(x) = \begin{cases} 0, & \text{if } x < 0, \\ 1 - \frac{3}{5}e^{-x}, & \text{if } x \ge 0. \end{cases}$$

- 2. (15%) Let X be a random variable. Show that if Var(X) = 0, then P(X = EX) = 1.
- 3. Let X be a random variable distributed as negative binomial with p.d.f. (or p.m.f.)

$$f(x;r,p) = p^r {r+x-1 \choose x} (1-p)^x, \quad x = 0,1,..., \quad 0$$

and let g(x) be a function with $-\infty < Eg(X) < +\infty$ and g(-1) = 0.

(a) (10%) Show that

$$\mathrm{E}[(1-\mathrm{p})\mathrm{g}(X)] = \mathrm{E}\left[\frac{X}{\mathrm{r}+X-1}\mathrm{g}(X-1)\right].$$

- (b) (10%) Use (a) to find the expectation of X.
- 4. Let X_1, X_2, \ldots, X_n be independent random variables distributed as $P(\lambda_1)$, $P(\lambda_2)$,

...,
$$P(\lambda_n)$$
, respectively. Let $T = \sum_{j=1}^n X_j$ and $\lambda = \sum_{j=1}^n \lambda_j$.

- (a) (10%) Show that T is distributed as $P(\lambda)$.
- (b) (10%) Find the conditional distribution of X_j , given T = t. [Note that $P(\lambda)$ denotes the Poisson distribution with parameter λ .]
- 5. Let X and Y be two independent random variables distributed as Beta(α, β) and Beta($\alpha + \beta, \gamma$), respectively. Set U = XY and V = X.
 - (a) (10%) Find the joint p.d.f. of U and V.
 - (b) (10%) What is the marginal distribution of U?

Note that the p.d.f. of Beta (α, β) is given by

$$f(x;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 < x < 1, \quad \alpha,\beta > 0.$$

6. (15%) Let $\{X_n\}$ be a sequence of random variables with $P\{X_n=\pm\frac{1}{n}\}=\frac{1}{2}$. Show that $X_n \xrightarrow{a.s.} 0$.