成功大學 97 學年度碩士班甄試入學考試(基礎數學試題) 共 2 頁

Part I.

Advance Calculus

Show all your work for full credits. Good Luck!

- 1. (15 points) Let $f_n: A \subseteq \mathbb{R} \to \mathbb{R}$ be a sequence of functions converging to f uniformly in A. Prove or disprove the followings
 - (a) Assume in addition that $\{f_n\}$ and f are integrable and $A = [0, +\infty)$. Then $\lim_{n\to\infty} \int_0^\infty f_n(x) dx = \int_0^\infty f(x) dx$.
 - (b) Assume in addition that $\{f_n\}$ are continuous functions. Then f is continuous.
 - (c) Assume in addition that $\{f_n\}$ are differentiable functions. Then f is differentiable and

$$\lim_{n \to \infty} f'_n(x) = f'(x), \forall x \in A$$

(Recall: $f_n \to f$ uniformly in A if for any $\varepsilon > 0$, there exists N such that $|f_n(x) - f(x)| < \varepsilon$, for any $n \ge N$ and any $x \in A$.)

- 2. (12 points) Prove or disprove the followings
 - (a) If f is continuous at x=0, then there exists a $\delta>0$ such that f is continuous on $(-\delta,\delta)$.
 - (b) Assume that $f: \mathbb{R} \to \mathbb{R}$ is differentiable everywhere. Then f' is continuous everywhere.
- 3. (15 points) Evaluate $\iint_{\Omega} xy \ dxdy$, where Ω is the first-quadrant region (i.e. $\{(x,y): x \geq 0, y \geq 0\}$) bounded by the curves

$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 9$, $x^2 - y^2 = 1$, $x^2 - y^2 = 4$.

- 4. (a) (10 points) Let $f: \Omega \subseteq \mathbb{R}^3 \to \mathbb{R}$ be a smooth function. Consider a smooth surface given by $S = \{(x, y, z) : f(x, y, z) = k\}$ for some constant k. Show that $\nabla f(\alpha(t))$ is perpendicular to $\alpha'(t)$, for any curve $\alpha(t)$ lying on S, provided that $\nabla f(\alpha(t)) \neq 0$.
 - (b) (5 points) Find the normal vector of the surface $z = f(x,y) = \sqrt{x^2 + y^2}$ at the point $p = (1, 1, \sqrt{2})$.
- 5. (15 points) Assume $x_i > 0, 1 \le i \le n$. Find the maximum value of the function $f(x) = (x_1 x_2 \cdots x_n)^{1/n}$ subjecting to the constraint that $g(x_1, \dots, x_n) = x_1 + x_2 + \dots + x_n = n$. (Reminder: explain carefully why your answer is the maximum value but not minimum)
- 6. (16 points) Let F be a continuous vector field defined in $D \subseteq \mathbb{R}^2$, the unit disk centered at origin. Let $\gamma : [0,1] \to D$ be a piecewise smooth curve in D. Prove that the followings are equivalent:
 - (a) F is the gradient of a continuously differentiable function f in D.
 - (b) $\int_{\gamma} F \cdot d\gamma = 0$ for every piecewise smooth closed curve γ . (i.e. $\gamma(0) = \gamma(1)$)
- 7. (12 points) Let $f:(0,1)\to\mathbb{R}$ be a continuous function satisfying the condition

$$f(\frac{x+y}{2}) \le \frac{f(x)+f(y)}{2},$$

for any $x, y \in (0,1)$. Prove that f is convex. (Recall: A function f is convex on (0,1) if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y),$$

for any $0 \le \lambda, x, y \le 1$.)

成功大學 97 學年度碩士班甄試入學考試(基礎數學試題) 共 2 頁

Part II.

Linear Algebra

- 1. Let T be a linear operator on \mathbb{R}^3 and $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 3 \end{bmatrix}$ be the matrix representation of T relative to the standard basis. Find the matrix representation of T relative to the ordered basis $\beta = \{(1,1,1),(1,1,0),(1,2,3)\}.$ (12%)
- 2. Suppose V and W are finite-dimensional vector spaces and $T:V\to W$ is linear. Prove that

$$\dim V = \dim(\ker T) + \dim(\operatorname{ran} T). \tag{16\%}$$

3. Let $A, B \in \mathbb{C}^{n \times n}$ and λ be an eigenvalue of A. Show that

- (a) If B is similar to A, then λ is an eigenvalue of B. (8%)
- (b) $p(\lambda)$ is an eigenvalue of p(A) for every polynomial p(x). (12%)
- (a) Let V be a complex inner product space and T is a linear operator on V.
 Prove that if ⟨Tx, x⟩ = 0 for all x ∈ V, then T = 0. (12%)
 - (b) Does the conclusion in (a) hold if V is a real inner product space? Why? (6%)
- 5. (a) Apply the Gram-Schmidt process to the set $\{(1,1,1),(1,1,0),(1,2,3)\}$ to find an orthonormal basis for \mathbb{R}^3 . (6%)
 - (b) Factor the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 3 \end{bmatrix}$ into a product of an orthogonal matrix and an upper triangular matrix. (12%)
- 6. Prove or disprove the following statements:
 - (a) There exists $A \in \mathbb{C}^{n \times n}$ such that

$$\dim(\text{span}\{I, A, A^2, A^3, \ldots\}) = n^2.$$
 (8%)

(b) There exists $A \in \mathbb{C}^{n \times n}$, $A \neq \alpha I$ for any $\alpha \in \mathbb{C}$, such that

$$\dim \left(\operatorname{span} \left\{ I, A, A^2, A^3, \ldots \right\} \right) < n. \tag{8\%}$$