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Part I. LINEAR ALGEBRA

1. (8 points) Let A be a 3×4 matrix over the real number field R, and let {(2,3,1,0)} be a basis for the nullspace of A.

(a) What is the rank of A and the complete solution to Ax = 0?

Solution: The dimension of the nullspace is 1, so the rank of A is 4− 1 = 3. The complete solution to Ax = 0 is
x = c · (2,3,1,0) for any constant c.

(b) Find a basis for the column space of AT .

Solution: The column space of AT is the row space of A. The nonzero rows of the row reduced echelon form


1 0 −2 0
0 1 −3 0
0 0 0 1


 form a basis.

2. (a) (4 points) The linear transformation T : R2 → R2 reflects a vector about the line y = −x and then projects that vector
orthogonally onto the x-axis. Find the standard matrix for T .

Solution: T
[

1
0

]
=

[
0
0

]
and T

[
0
1

]
=

[−1
0

]
so the matrix representation for T is

[
0 −1
0 0

]
.

(b) (4 points) Suppose T : R4 → R2 is a linear transformation with T (1,0,0,1) = (2,3) and T (0,1,1,0) = (1,5). Find
T (6,2,2,6).

Solution: Let v1 = (1,0,0,1) and v2 = (0,1,1,0). Then v = (6,2,2,6) = 6v1 +2v2. By linearity,

T (v) = T (6v1 +2v2) = 6T (v1)+2T (v2) = 6(2,3)+2(1,5) = (14,28)

3. (8 points) Suppose the 3×3 matrix A over R has eigenvalues 0, 1, and 2 with eigenvectors v0, v1, v2, respectively.

(a) What is the trace of A−2I?

Solution: A−2I has eigenvalues −2,−1,0 so its trace is −3.

(b) Solve the equation Ax = v1 + v2 for x.

Solution: x = av0 + v1 + 1
2 v2.

4. (16 points) Let V be the vector space R3 over R. The following matrix is a projection matrix on V : P = 1
21




1 2 −4
2 4 −8
−4 −8 16


.

(a) What subspace W of V does P project onto?

Solution: The projection matrix P projects onto the column space of P which is the line c · (1,2,−4).

(b) What is the distance from that subspace W to b = (5,4,−2)?

Solution: The vector from b to the subspace is

e = b−Pb =




5
4
−2


− 21

21




1
2
−4


 =




4
2
2




and the distance is
‖e‖=

√
42 +22 +22 = 2

√
6.

(c) What are the three eigenvalues of P?

Solution: Since P projects onto a line, its three eigenvalues are 0,0,1. The eigenvectors for 0 are vectors orthogonal to
(1,2,−4). The eigenvector for 1 is (1,2,−4).

(d) If you solve du
dt =−Pu (notice minus sign) starting from u(0), the solution u(t) approaches a steady state as t →∞. Describe

that limit vector u(∞)?
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Solution: The solution u(t) to the differential equation has the form u(t) = v1e−t + v2 where v1 is in W and v2 is in the
orthogonal complement of W . Then u(∞) = v2, which is the projection of u(0) onto the orthogonal complement of W .
That is, u(∞) = u(0)−P(u(0)).

5. (10 points) Let n denote a positive integer, V denote an n-dimensional vector space, and T denote a linear operator on V .
Suppose v ∈V is a nonzero vector such that T kv = 0 for some positive integer k. Show that T nv = 0.

Solution: Suppose k is the smallest positive integer such that T kv = 0. The vectors v,T v,T 2v, . . . ,T k−1v are linearly indepen-
dent so k ≤ n:
Suppose c0v + c1T v + c2T 2v + · · ·+ ck−1T k−1v = 0. Applying T k−1 to both sides we get c0T k−1v = 0 and so c0 = 0. Now
applying T k−2 to both sides we get c1T k−1v = 0 and so c1 = 0. Continuing in this fashion, we see that c j = 0 for all j.

Part II. ADVANCED CALCULUS

6. (10 points) Let x1 = π
2 and suppose that xn are defined inductively for n = 2,3, . . . by cos(xn+1) = sin(xn)

xn
, 0 < xn+1 < π

2 , for
n = 1,2, . . ..

(a) Prove that xn+1 < xn for n = 1,2, . . .. Hint: You may find cos(x) = d
dx sin(x) and the Mean Value Theorem useful.

Solution: By the Mean Value Theorem, there exists a 0 < c < xn such that sinxn = sinxn−sin0 = cosc(xn−0) = coscxn.
This implies that xn+1 = c < xn.

(b) Show that the sequence {xn}∞
n=1 is convergent.

Solution: Since the set {xn|n ∈ N} is nonempty and bounded from below by 0, l = inf{xn|n ∈ N} exists. The definition
of l implies that for each ε > 0 there exists an xk for some k ∈ N such that l + ε > xk. The result of part (a) says that
{xn}∞

n=1 is decreasing which implies that l + ε > xk ≥ xn > 0 for all n ≥ k. Therefore, we get |xn− l| < ε for all n ≥ k
which means that lim

n→∞
xn = l.

(c) Find explicitly the limit x of the sequence {xn}∞
n=1.

Solution: Let f (x) = xcosx− sinx for x ∈ [0, π
2 ]. To find all possible limits is equivalent to find zeros of f over [0, π

2 ].
Note that f (0) = 0 and f ′(x) = −xsinx < 0 for all x ∈ (0, π

2 ], we can conclude that x = 0 is the only zero of f . Hence,
lim
n→∞

xn = 0.

7. (a) (5 points) State what it means for a sequence { fn(x)}∞
n=1 of real valued functions on a set X ⊂ Rp to converge uniformly

to a function f on X .

Solution: { fn}∞
n=1is said to converge uniformly on X to f if for each ε > 0 there exists a K(ε) ∈ N such that for all

n≥ K(ε) and x ∈ X then | fn(x)− f (x)|< ε.

(b) (5 points) Let F : [0,1]× [0,1]→ R be a continuous function on the unit square. Let fn(t) = F( 1
n , t) and f (t) = F(0, t).

Use the definition in part (a) to show that { fn(x)}∞
n=1 converges uniformly to f on the interval [0,1].

Solution: Since F is continuous on [0,1]× [0,1], F is uniformly continuous there. This implies that for any ε > 0 and
any t ∈ [0,1], there exists a δ = δ (ε) > 0 such that if |x− 0| < δ then |F(x, t)−F(0, t)| < ε. Letting K(ε) = [ 1

δ ] + 1,

where [ 1
δ ] is defined to be the greatest integer less than or equal to 1

δ , we note that n ≥ K(ε) > 1
δ implies that 1

n < δ .
Thus, | fn(t)− f (t)|= |F( 1

n , t)−F(0, t)|< ε for all n≥ K(ε). Thus { fn}∞
n=1 converges uniformly to f on [0,1]

8. (10 points) For each integer k ≥ 1, let fk : R→ R be differentiable satisfying | f ′k(x)| ≤ 1, for all x ∈ R, and fk(0) = 0.

(a) For each x ∈ R, prove that the set { fk(x)}∞
k=1 is bounded.

Solution: For each x ∈ R, since | fk(x)| = | fk(x)− fk(0)| ≤ | f ′k(ck)(x−0)| ≤ |x|, where ck lies between x and 0, the set
{ fk(x)}∞

k=1 is bounded.

(b) Use Cantor’s diagonal method to show that there is an increasing sequence n1 < n2 < n3 < · · · of positive integers such
that, for every x ∈Q, we have { fnk(x)} is a convergent sequence of real numbers.
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Solution: Let Q= {x1,x2, · · ·}. Since { fk(x1)} is bounded, we can extract a convergent subsequence, denoted { f 1
k (x1)},

out of { fk(x1)}. Next, the boundedness of { f 1
k (x2)} implies that we can extract a convergent subsequence, denoted

{ f 2
k (x2)}, out of { f 1

k (x2)}. Continuing this way, the boundedness of { f j
k (x j+1)} implies that we can extract a convergent

subsequence { f j+1
k (x j+1)}, out of { f j

k (x j+1)} for each j ≥ 1. Let fnk = f k
k for each k ≥ 1. Then { fnk} is a subsequence

of { fn} and { fnk} converges at each x j ∈Q.

9. (10 points) A function f : R→ R is said to be convex if for all x,y ∈ R, λ ∈ [0,1], f (λx +(1−λ )y) ≤ λ f (x)+ (1−λ ) f (y).
Suppose that f : R→ R is convex and that f ′′(x) exists for all x ∈ R.

(a) For any x < y and 0 < h < y− x, prove that

f (x+h)≤ y− x−h
y− x

· f (x)+
h

y− x
· f (y), and f (y−h)≤ h

y− x
· f (x)+

y− x−h
y− x

· f (y).

Solution: Setting x+h = λx+(1−λ )y, we get λ = y−x−h
y−x and 1−λ = h

y−x . Thus

f (x+h) = f ( y−x−h
y−x x+ h

y−x y)≤ y−x−h
y−x f (x)+ h

y−x f (y).

Setting y−h = βx+(1−β )y, we get β = h
y−x and 1−β = y−x−h

y−x . Thus

f (y−h) = f ( h
y−x x+ y−x−h

y−x y)≤ h
y−x f (x)+ y−x−h

y−x f (y).

(b) Prove that f ′(x)≤ f ′(y) whenever x≤ y.

Solution: Since

f ′(x)− f ′(y) = lim
h→0+

f (x+h)− f (x)
h − f (y−h)− f (y)

−h = lim
h→0+

f (x+h)+ f (y−h)− f (x)− f (y)
h ≤ lim

h→0+

f (x)+ f (y)− f (x)− f (y)
h = 0,

where we have used the result of part (a) in the last inequality. We have shown that f ′(x)≤ f ′(y) whenever x≤ y.

(c) Prove that f ′′(x)≥ 0 for all x ∈ R.

Solution: The result of part (b) implies that f ′′(x) = lim
h→0+

f ′(x+h)− f ′(x)
h ≥ 0, we have f ′′(x)≥ 0 for all x ∈ R.

10. (10 points) Let g : Rp → Rp belong to class C1(Rp), i.e. Dg(x) exists for all x ∈Rp and the mapping x→ Dg(x) is continuous.
Assume that there is a constant a such that ‖Dg(x)‖ ≤ a < 1 for each x ∈ Rp.

(a) Show that the function f (x) = x+g(x) for x ∈ Rp satisfies ‖ f (x1)− f (x2)− (x1− x2)‖ ≤ a‖x1− x2‖ for all x1,x2 ∈ Rp.

Solution: The Mean Value Theorem implies that there exists a z = λx1 +(1−λ )x2 ∈ Rp for some λ ∈ [0,1] such that

‖ f (x1)− f (x2)− (x1− x2)‖= ‖Dg(z) · (x1− x2)‖ ≤ a‖x1− x2‖.

(b) Show that f in part (a) is a bijection of Rp into Rp.

Solution: Since D f = I +Dg and the eigenvalues of Dg are bounded by a < 1, D f is invertible everywhere. The Inverse
Function Theorem implies that f is a local bijection. Since the result of part (a) says that f is a global one-to-one function
of Rp into Rp, f is a bijection of Rp into Rp.


