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Part I. LINEAR ALGEBRA

1. (8 points) Let A be a 3 x 4 matrix over the real number field R, and let {(2,3,1,0)} be a basis for the nullspace of A.
(a) What is the rank of A and the complete solution to Ax = 0?

Solution: The dimension of the nullspace is 1, so the rank of A is 4 — 1 = 3. The complete solution to Ax = 0 is
x=c-(2,3,1,0) for any constant c.

(b) Find a basis for the column space of A” .

Solution: The column space of AT is the row space of A. The nonzero rows of the row reduced echelon form

1 0 =2 0
0 1 —3 0] form a basis.
00 0 1
2. (a) (4 points) The linear transformation 7: R> — R? reflects a vector about the line y = —x and then projects that vector

orthogonally onto the x-axis. Find the standard matrix for T'.

. | |0 0] |-1 . . .10 —1
Solution: T [O} = {O} and T L] = { 0 } so the matrix representation for 7 is [O 0 ]

(b) (4 points) Suppose T: R* — R? is a linear transformation with 7(1,0,0,1) = (2,3) and 7(0,1,1,0) = (1,5). Find
7(6,2,2,6).

Solution: Letv; =(1,0,0,1) and v; = (0,1, 1,0). Then v = (6,2,2,6) = 6v| + 2v,. By linearity,

TWw)=T(6vi+2v) =6T(vi)+2T(v2) =6(2,3)+2(1,5) = (14,28)

3. (8 points) Suppose the 3 x 3 matrix A over R has eigenvalues 0, 1, and 2 with eigenvectors vy, v{, v, respectively.
(a) What is the trace of A —21?

Solution: A — 27 has eigenvalues —2,—1,0 so its trace is —3.
(b) Solve the equation Ax = v| + v, for x.

Solution: x =avy+v; + %vz.

1 2 -4
4. (16 points) Let V be the vector space R* over R. The following matrix is a projection matrix on V: P = 2'—1 2 4 -8].
-4 -8 16

(a) What subspace W of V does P project onto?

Solution: The projection matrix P projects onto the column space of P which is the line ¢ (1,2, —4).

(b) What is the distance from that subspace W to b = (5,4,—2)?

Solution: The vector from b to the subspace is

5 4
e=b—Pb=|4|-312]|=]2
-2 —4 2

and the distance is

lel = V4 122422 =2V6.

(c) What are the three eigenvalues of P?

Solution: Since P projects onto a line, its three eigenvalues are 0,0, 1. The eigenvectors for 0 are vectors orthogonal to
(1,2,—4). The eigenvector for 1 is (1,2, —4).

(d) If you solve % = —Pu (notice minus sign) starting from u(0), the solution u(z) approaches a steady state as t — co. Describe

that limit vector u()?
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Solution: The solution u(t) to the differential equation has the form u(t) = vie™" 4+ v, where v; is in W and v; is in the
orthogonal complement of W. Then u(e) = v,, which is the projection of u(0) onto the orthogonal complement of W.
That is, u(ee) = u(0) — P(u(0)).

5. (10 points) Let n denote a positive integer, V denote an n-dimensional vector space, and 7 denote a linear operator on V.
Suppose v € V is a nonzero vector such that T¥v = 0 for some positive integer k. Show that 7"v = 0.

Solution: Suppose k is the smallest positive integer such that T%v = 0. The vectors v, Tv,T?v,...,T*"!y are linearly indepen-
dent so k < n:

Suppose cov+c1Tv+caT?v+---+ ¢, T*"'v = 0. Applying T¥~! to both sides we get coT* v = 0 and so co = 0. Now
applying T¥=2 to both sides we get ¢; 7% 'v = 0 and so ¢; = 0. Continuing in this fashion, we see that ¢j =0 forall j.

Part II. ADVANCED CALCULUS

sin(x,)
Xn

6. (10 points) Let x; = 7 and suppose that x,, are defined inductively for n = 2,3,... by cos(x,;1) =
n=1,2,...
d

(a) Prove that x, 11 < x, forn=1,2,.... Hint: You may find cos(x) = 7-sin(x) and the Mean Value Theorem useful.

, 0 <xpq1 < Z, for

Solution: By the Mean Value Theorem, there exists a 0 < ¢ < x, such that sinx,, = sinx, —sin0 = cosc (x,, — 0) = cos cx,,.
This implies that x,11 = ¢ < x;,.

(b) Show that the sequence {x,};_; is convergent.

Solution: Since the set {x,|n € N} is nonempty and bounded from below by 0, / = inf{x,|n € N} exists. The definition
of [ implies that for each € > 0 there exists an x; for some k € N such that / + & > x;. The result of part (a) says that
{xn}y_; is decreasing which implies that [ + € > x; > x,, > 0 for all n > k. Therefore, we get |x, — | < € for all n > k
which means that nlgrolo 55 = e

(c) Find explicitly the limit x of the sequence {x,},_;.

Solution: Let f(x) = xcosx —sinx for x € [0, Z]. To find all possible limits is equivalent to find zeros of f over [0, Z].
Note that f£(0) = 0 and f’(x) = —xsinx < 0 for all x € (0, 5], we can conclude that x = 0 is the only zero of f. Hence,
lim x, = 0.

n—oo

7. (a) (5 points) State what it means for a sequence {f,(x)};_, of real valued functions on a set X C R? to converge uniformly
to a function f on X.

Solution: {f,};_,is said to converge uniformly on X to f if for each € > 0 there exists a K(¢) € N such that for all
n> K(g) and x € X then |f,(x) — f(x)| < €.

(b) (5 points) Let F : [0,1] x [0,1] — R be a continuous function on the unit square. Let f,(t) = F(1,t) and f(t) = F(0,z).
Use the definition in part (a) to show that { f,,(x)}_, converges uniformly to f on the interval [0, 1].
Solution: Since F is continuous on [0, 1] x [0,1], F is uniformly continuous there. This implies that for any € > 0 and
any ¢ € [0, 1], there exists a § = (&) > 0 such that if |x — 0| < & then |F(x,7) — F(0,1)| < €. Letting K(g) = [%} +1,
where [%] is defined to be the greatest integer less than or equal to % we note that n > K(¢g) > % implies that 1 < §.
Thus, | £,(t) — f(t)] = |[F(L,1) = F(0,1)| < € forall n > K(€). Thus {f,}:>_, converges uniformly to f on [0, 1]

n=1
8. (10 points) For each integer k > 1, let f; : R — R be differentiable satisfying |f;(x)| < 1, for all x € R, and f;(0) = 0.
(a) For each x € R, prove that the set { f(x) }7_, is bounded.

Solution: For each x € R, since |fi(x)| = | fi(x) — fx(0)] < |fi(ck) (x—0)| < |x|, where ¢ lies between x and 0, the set
{fi(x)}, is bounded.

(b) Use Cantor’s diagonal method to show that there is an increasing sequence n; < ny < n3 < --- of positive integers such
that, for every x € Q, we have { f;, (x)} is a convergent sequence of real numbers.
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Solution: Let Q = {x|,xy,---}. Since {f;(x1)} is bounded, we can extract a convergent subsequence, denoted { f{ (x)},
out of {fi(x1)}. Next, the boundedness of {f!(x)} implies that we can extract a convergent subsequence, denoted
{f2(x2)}, out of {f{ (x2)}. Continuing this way, the boundedness of { f,f (xj+1)} implies that we can extract a convergent
subsequence {f,‘c’-+1 (xj41)}, out of {fk’ (xj41)} for each j > 1. Let f,, = ff for each k > 1. Then {f;, } is a subsequence
of {f,} and { f, } converges at each x; € Q.

9. (10 points) A function f: R — R is said to be convex if for all x,y e R, A € [0,1], f(Ax+ (1 —=2A)y) < Af(x)+(1—=1)f(y).
Suppose that f : R — R is convex and that f”(x) exists for all x € R.

(a) Forany x <yand 0 < h <y—x, prove that

—x—h h h
YR )+ ——f(y), and fly—h) < ——

flx+h) <
y—x y—x y—=

=

<
|

=

Solution: Setting x+h=Ax+ (1 —21)y, we get A = y:xf;h and1—A = y%x Thus

Flet+h) = F(EEEx+ shy) < 222 £(x) + 2 £().
Setting y —h = Bx+ (1 — )y, we get § = y%x and 1 — B = =" Thus

y—x

FO—h) = FGRx+ EERy) < B f(x) + L £(3).

(b) Prove that f'(x) < f/(y) whenever x < y.

Solution: Since

1O () — Tl LOHR—)  fO-R—f0) i S =) —f () f() o SO —SE)-/0)
F@) = f) = lim L8 DRI — tim ; < lim [EHEIDIEI0) = o

)

where we have used the result of part (a) in the last inequality. We have shown that f'(x) < f’(y) whenever x < y.
(c) Prove that f”(x) > 0 for all x € R.

Solution: The result of part (b) implies that f”(x) = lim w > 0, we have f”(x) >0 for all x € R.

10. (10 points) Let g : R” — IR” belong to class C!(R”), i.e. Dg(x) exists for all x € R” and the mapping x — Dg(x) is continuous.
Assume that there is a constant a such that ||Dg(x)|| < a < 1 for each x € R”.

(a) Show that the function f(x) = x+ g(x) for x € R? satisfies || f(x1) — f(x2) — (x1 —x2)|| < a||x1 —x2|| for all x;,x, € RP.

Solution: The Mean Value Theorem implies that there exists a z = Ax; + (1 — A)xz € R? for some A € [0, 1] such that

1f (Ge1) = F (2) = (e = x2) | = [[Dg(2) - (1 = x2) || < @}y — 2]

(b) Show that f in part (a) is a bijection of R” into R”.

Solution: Since Df = I+ Dg and the eigenvalues of Dg are bounded by a < 1, Df is invertible everywhere. The Inverse
Function Theorem implies that f is a local bijection. Since the result of part (a) says that f is a global one-to-one function
of R” into R?, f is a bijection of R” into R?.




