國立成功大學93 學年度 頭 去 雖考試(基礎數學 試過) Ιĺ

Show all works!

Part I.

- 1. Let $T: P_2(R) \to P_3(R)$, where $P_n(R)$ consists of all polynomials over real numbers R having degree less than or equal to n; T(f(x)) = xf(x) + f'(x), where f'(x) denotes the derivative of f(x). Find bases for N(T) (the null space of T) and R(T) (the range of T). (10%)
- 2. Let $V=R^3$, and define $f_1,f_2,f_3\in V^*$ (the dual space of V) as follows: $f_1(x,y,z)=x-2y$, $f_2(x,y,z)=x+y+z$, $f_3(x,y,z)=y-3z$. Prove that $\{f_1,f_2,f_3\}$ is a basis for V^* , and then find a basis for V for which it is the dual. (10%)
- 3. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(a_1, a_2, a_3) = (a_1 + 2a_2 + a_3, -a_1 + a_2 + 2a_3, a_1 + a_3).$$

Show that T is invertible and compute the inverse of T.

(10%)

- 4. Let $W = \{(x, y, z) | x + 3y 2z = 0\}$ be a subspace of the inner product space $V = R^3$ and y = (3, 2, 1). Find the orthogonal projection of y on W. (10%)
- 5. Let $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$.

Find a Jordan canonical form J and an invertible matrix Q such that $J = Q^{-1}AQ$. (10%)

Part II.

6. Prove or disprove the following statements:

(24%)

- (i) If a function f is uniformly continuous on (a, b), then it is differentiable on (a, b);
- (ii) If each f_n is continuous on (a, b) and $f_n \to f$ uniformly, then f is continuous on (a, b);
- (iii) If the real series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n^2$ converges;
- (iv) If f is continuous on [a, b] and $\int_a^b fg = 0$ for every integrable function g on [a, b], then f(x) = 0for all $x \in [a, b]$;
- (v) The function $f(x,y) = \begin{cases} \frac{x^3 + y^3}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$ is differentiable on \mathbb{R}^2 ;
- (vi) If V is a nonempty, open set in \mathbb{R}^2 and $f: V \to \mathbb{R}$ is differentiable on V such that $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} = 0$ on V, then f is constant on V.
- 7. Suppose $\{x_n\}$ and $\{y_n\}$ are real sequences. Prove that if $\lim_{n\to\infty} x_n$ exists, then

(6%)

$$\lim_{n\to\infty}\sup(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}\sup y_n.$$

8. Suppose f is differentiable on [a-h,a+h] (h>0). Prove that there exists $\theta \in (0,1)$ such that (6%)

$$\frac{f(a+h)-f(a-h)}{f(a-h)}=f'(a+\theta h)+f'(a-\theta h)$$

 $\frac{f(a+h)-f(a-h)}{h}=f'(a+\theta h)+f'(a-\theta h).$ 9. Prove that for all $x\in[0,1]$ (7%)

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{16}$$

10 Find $\iint_E e^{\frac{y-x}{y+x}} dA$ where E is the region bounded by the lines x+y=1, x+y=2, x=y, x=0. (7%)