國立成功大學八十六學年度應較所發達考試(差碳數學試題)共一頁

- (i) Find the characteristic polynomial and minimal polynomial of matrix A. (7%)
- (ii) Let B be a 8 × 8 matrix. Suppose that A and B have the same characteristic polynomial and minimal polynomial. Find all possible
 Jordan normal forms of B.
- 2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ with T(x, y, z) = (y, z, x). Find all subspaces W with $T(W) \subseteq W$. (10%)
- 3. Let V be a vector space over a field k, and let $T:V\to V$ be a linear transformation. Let v_1,\ldots,v_m be eigenvectors of T, with eigenvalues $\lambda_1,\ldots,\lambda_m$ respectively. Assume that $\lambda_i\neq\lambda_j$ if $i\neq j$. Show that v_1,\ldots,v_m are linearly independent. (10%)
- 4. (i) Let V be a vector space over \mathbb{R} with an inner product $\langle \ , \ \rangle$. Let W be a finite dimensional vector subspace with orthonormal basis $\{w_1, \ldots, w_k\}$. Let $v \in V$ and $d = \inf\{\|v w\| \in \mathbb{R} | w \in W\}$. Show that $d = \|v (v, w_1)w_1 \cdots \langle v, w_k\rangle w_k\|$. ("%)
 - (ii) Let $I: \mathbb{R}^2 \to \mathbb{R}$ with

$$I(a,b) = \int_0^{\frac{\pi}{2}} |\sin x - (ax+b)|^2 dx.$$

Find $(\alpha, \beta) \in \mathbb{R}^2$ such that $I(\alpha, \beta) \le I(a, b)$ for all $(a, b) \in \mathbb{R}^2$. (1%)

5. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n$ diverges. Show that

(i)
$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n} \text{ diverges;}$$
 (1%)

(ii)
$$\sum_{n=1}^{\infty} \frac{a_n}{1 + n^2 a_n}$$
 converges; (1%)

(iii)
$$\sum_{n=1}^{\infty} \frac{a_n}{1 + na_n}$$
 sometimes converges and sometimes diverges. (10%)

- 6. Suppose $f: \mathbb{R} \to \mathbb{R}$ is differentiable at some point p in \mathbb{R} . Put $f^+: \mathbb{R} \to [0, \infty)$: $f^+(x) = \max\{f(x), 0\}$. Show that the function $g: \mathbb{R} \to \mathbb{R} : g(x) = (f^+(x))^2$ is differentiable at p with $g'(p) = 2f^+(p)f'(p)$. (15%)
- 7. Suppose $f:[a,b] \to \mathbb{R}$ is continuous. Is the function $g:[a,b] \to \mathbb{R}: g(x) = \sup_{a \le t \le x} f(t)$ continuous?
- 8. Suppose $f:[0,1]\to\mathbb{R}$ is continuous and satisfies

$$\int_0^1 f(x)x^n dx = 0, \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Find the range of f.

(8%)