國立成功大學八十四學年度發生湖考試(圣破数學試題) 井/頁

Work each of your problems (Parts I ,II). Part I. Advanced Calculus

- 1. Suppose $f:(a,b)\to\mathbb{R}$ is uniformly continuous. Show that there is l in \mathbb{R} such that $\lim_{x\to b^-}f(x)=l$. (10%)
- 2. Does the series $\sum_{k=0}^{\infty} \frac{x^2}{(1+x^2)^k}$ converge pointwise on \mathbb{R} ? (5%)

 Does it converge uniformly on \mathbb{R} ? (5%)
- 3. Let $f:[a,b] \to \mathbb{R}$ be continuously differentiable with f(a) = f(b) = 0 and $\int_a^b (f(x))^2 dx = 1$. Evaluate $\int_a^b t f(t) f'(t) dt$. (10%)
- 4. Suppose f: [0,∞) → [0,∞) is Riemann integrable. Show that if f is uniformly continuous on [0,∞), then lim f(x) = 0. (10%)
 Can "uniform continuity" be replaced by "continuity"? (10%)

Part II. Linear Algebra

- 1. Let V be an inner product space over a field F and $T, S: V \to V$ be linear.
 - (a) Show that if $\langle Tx, y \rangle = \langle Sx, y \rangle$ for all $x, y \in V$, then T = S. (4%)
 - (b) Show that if $F = \mathbb{C}$ and $\langle Tx, x \rangle = \langle Sx, x \rangle$ for all $x \in V$, then T = S. (10%)
 - (c) Does the conclusion in (b) hold when $F = \mathbb{R}$? Justify your answer. (6%)
- Give an example of two square matrices A and B such that they have the same characteristic polynomial and minimal polynomial, but A is not similar to B. (10%)
- 3. Let V be a finite-dimensional vector space, $T:V\to V$ be linear, N(T) be the null space of T and R(T) be the range of T. Show that
 - (a) if $rank(T) = rank(T^2)$, then $V = R(T) \oplus N(T)$ (the direct sum of R(T) and N(T)); (10%)
 - (b) there exists a positive integer k such that $V = R(T^k) \oplus N(T^k)$. (10%)