國立成功大學 113 學年度「碩士班」甄試入學考試高等微積分

Advanced Calculus

October 19, 2023

1. (15 points) Let $f:[0,1]\to\mathbb{R}$ be a function defined by

$$f(x) := \begin{cases} \frac{1}{k} & \text{when } x \in \mathbb{Q} \text{ and } x = \frac{q}{2^k} \text{ for some } q, k \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is continuous at every irrational point.

2. (a). (10 points) Determined whether the following series is convergent or not:

$$\sum_{n=1}^{\infty} 5^{-n+(-1)^n}.$$

- (b). (10 points) Prove that the power series $\sum_{n=0}^{\infty} a_n x^n$ converges on (-R, R) when $\sum_{n=0}^{\infty} R^{2n} a_n^2$ converges.
- 3. (15 points) Let $X \subset \mathbb{R}^2$ be an open set and $f: X \to \mathbb{R}$ be a continuous function with $f(x) \neq 0$ for all $x \in X$. Prove that either f(x) > 0 for all $x \in X$, f(x) < 0 for all $x \in X$ or X is disconnected.
- 4. (20 points) Let $\{g_n\}_{n\in\mathbb{N}}$ be a sequence of positive, Riemann integrable functions defined on [0,1] and $g_n(x) \leq 1$ for all $x \in [0,1]$, $n \in \mathbb{N}$. Prove that the sequence

$$\left\{ f_n(x) := \int_0^x g_n(s)ds \right\}_{n \in \mathbb{N}}$$

has a subsequence which is uniformly convergent on [0, 1].

- 5. (15 points) Let $f:[0,1]\to\mathbb{R}$ be a Riemann integrable function. Prove that f^3 is also Riemann integrable.
- 6. (15 points) Let $S := \{(x, y, z) \in \mathbb{R}^3 | z = 7 x^2 y^2, z \ge 3\}$, \vec{n} be the outer normal of S and

$$V := (z^2, -3xy, x^3y^3)$$

be a vector field defined on \mathbb{R}^3 . Find

$$\int_{\mathcal{S}} curl(V) \cdot \vec{n} ds.$$

A set X is disconnected iff there exist two disjoint nonempty open sets A, B cover X and $A \cap X \neq \emptyset$, $B \cap X \neq \emptyset$.

國立成功大學 113 學年度「碩士班」甄試入學考試線性代數

- Show all your work and justify all your answers.
- ullet R denotes the field of real numbers, and n denotes a positive integer.
- 1. (12 points) Let A be an $n \times n$ real matrix whose (i, j) entry is

$$A_{ij} = \begin{cases} j, & \text{if } i \leq j, \\ 0, & \text{otherwise,} \end{cases}$$

where i, j = 1, ..., n. Find the inverse of A.

2. (12 points) Let $V = \{(x,y) \mid x,y \in \mathbb{R}\}$. For $(x_1,y_1), (x_2,y_2) \in V$ and $a \in \mathbb{R}$, define $(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1y_2)$ and $a(x_1,y_1)=(ax_1,y_1)$.

Is V a vector space over $\mathbb R$ with these operations?

3. (15 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the function defined by

$$T(x, y, z) = (2x - y, 3y - 2z, x + y - z)$$

for $(x, y, z) \in \mathbb{R}^3$. Prove that T is a linear transformation. Is T one-to-one?

- 4. (15 points) Let $V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 2x_1 x_2 + 3x_3 x_4 = 0\}$. Find a basis β for V such that $(2, 1, -1, 0) \in \beta$.
- 5. (15 points) Let V be the real vector space of all $n \times n$ real matrices, and let $A \in V$. Suppose that W is the subspace of V spanned by the set $\{A^i \mid i \text{ is a non-negative integer}\}$, where A^0 is defined to be the $n \times n$ identity matrix. Prove that $\dim(W) \leq n$.
- 6. (15 points) Let V be a finite-dimensional complex inner product space, and let T be a positive definite linear operator on V. Prove that $T = S^*S$ for some invertible linear operator S on V. Here S^* denotes the adjoint of S.
- 7. (16 points) Find the Jordan canonical form of the real matrix $\begin{bmatrix} 4 & -3 & 2 & 1 \\ 1 & 0 & 1 & 1 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$.