國立成功大學 112 學年度「碩士班」甄試入學考試高等微積分

- 1. (a) Determine the limit of $f(x) = \frac{3x^2 5x + 4}{x + 1}$ at x = 2 by $\delta \epsilon$ definition. (10%)
 - (b) Determine whether f(x) is uniformly continuous on $[0, \infty)$. (10%)
- 2. Show by definition that the interior of triangular region with vertices (1,1), (5,2), (3,4) is an open set. (10%)
- 3. Denote x_n the positive root of the polynomial $f_n(x) = x^n + \dots + x^2 + x 1$. Show that the sequence $\{x_n\}$ is convergent and find the limit. (15%)
- 4. Given the fact that the following integral is convergent for all p > 0.

$$\int_{1}^{\infty} \frac{\sin x}{x^p} \, dx$$

For what values of p > 0 is the integral convergent absolutely/conditionally? (15%)

5. (a) By observing the graph of $y = \frac{n}{1+n^2x^2}$ as n increases and evaluating its integral on $(-\infty, \infty)$, find the value the following limit. (10%)

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{n \, e^{\cos x}}{1 + n^2 x^2} \, dx$$

- (b) Justify the convergence by $N-\epsilon$ definition. (10%)
- 6. (a) Evaluate the limit. (10%)

$$\lim_{n \to \infty} \left(\frac{3^n + 4^n + 5^n}{3} \right)^{\frac{1}{n}} + \left(\frac{3^{\frac{1}{n}} + 4^{\frac{1}{n}} + 5^{\frac{1}{n}}}{3} \right)^n$$

(b) Evaluate the limit. (10%)

$$\lim_{n \to \infty} \left(\int_0^1 e^{nx(1-x)} dx \right)^{\frac{1}{n}} + \left(\int_0^1 e^{\frac{x(1-x)}{n}} dx \right)^n$$

國立成功大學 112 學年度「碩士班」甄試入學考試線性代數

- 1. (10 points) Let A, B be two $m \times n$ matrix. Show that $|\operatorname{rank}(A) \operatorname{rank}(B)| \le \operatorname{rank}(A + B) \le \operatorname{rank}(A) + \operatorname{rank}(B)$.
- 2. (16 points) Let A be an $n \times n$ matrix and $r_k = \operatorname{rank}(A^k)$.
 - (a). Show that $\lim_{k\to\infty} r_k$ exist.
 - (b). If $r_3 \neq r_4$, Is A diagonalizable? Show your answer.
- 3. (8 points) Let $A = [a_{ij}]$ be an $n \times n$ matrix satisfying the condition that each a_{ij} is either equal to 1 or to -1. Show that $\det(A)$ is an integer multiple of 2^{n-1} .
- 4. (16 points) Let S, T be linear operator on V such that $S^2 = S$. Show that the range of S is invariant under T if and only if STS = TS. Show that both the range and null space of S are invariant under T if and only if ST = TS.
- 5. (20 points) Define a real vector space $V = \{f(x) \mid f(x) = ax^2 + bx + c, a, b, c \in \mathbb{R} \}$, with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$.
 - (a). Find an orthonormal basis for V.
 - (b). Using (a), find $f \in V$ to maximize $f(\frac{1}{2})$ subject to the constraint $\langle f, f \rangle = 1$.
- 6. (16 points) Let $A = \begin{bmatrix} -2 & 3 & 1 \\ 0 & a & 3 \\ 0 & -3 & 4 a \end{bmatrix}$. Find the condition of a such that A is diagonalizable over real number.
- 7. (14 points) Let A be an $n \times n$ real symmetric matrix. Show that the matrix $A^2 + A + I$ is positive-definite.