國立成功大學 111 學年度「碩士班」研究生甄試入學考試高等微積分

Throughout the exam, the Euclidean spaces \mathbb{R}^n are all equipped with usual Euclidean metric $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

1. (10 points) Evaluate the line integral

$$\int_C \mathbf{V} = d\mathbf{r}_s$$

where the vector field is given by

$$\mathbf{V} = \langle 2y + xe^{x^2}, 4x + e^{y^2}\cos y \rangle,$$

and C is the path staring from (1,0) to (0,-1) by a counterclockwise circular path, and then from (0,-1) to (0,0) by a straight line.

- 2. For a continuous function $f:[a,b]\to\mathbb{R}$ that is differentiable on (a,b),
 - (a) (8 points) State and prove the Rolle's Theorem for f.
 - (b) (7 points) State and prove the Mean Value Theorem for f.
- 3. (10 points) Given the fact that \mathbb{R} is complete, prove the *Monotone Convergence Theorem*:

Any bounded monotonic sequence in \mathbb{R} is convergent.

- 4. Consider the usual Euclidean space \mathbb{R}^n ,
 - (a) (8 points) If $E \subset K \subset \mathbb{R}^n$, where E is closed and K is compact, then E is compact.
 - (b) (8 points) Prove that if $\{K_{\alpha}\}_{{\alpha}\in A}$ is any family of compact subsets of \mathbb{R}^n , then

$$\bigcap_{\alpha\in A}K_{\alpha}$$

is also compact.

5. (15 points) Prove that the sequence of functions $\{f_n\}$ on [0,1] given by

$$f_n(x) = nx(1 - x^2)^n$$

pointwise converges to a function f(x) but does not converge uniformly,

- 6. Given two metric spaces (E, d_E) and (F, d_F) ,
 - (a) (8 points) If $f: E \to F$ is continuous and E is compact, then f is uniformly continuous.
 - (b) (8 points) Use part (a) to prove that

$$f(x) = e^{\cos^2 x \sin x}$$

is uniformly continuous on R.

- 7. (a) (4 points) State the *Inverse Function Theorem* on \mathbb{R}^n .
 - (b) (4 points) State the *Implicit Function Theorem* on \mathbb{R}^{n+m} .
 - (c) (10 points) These two theorems are in fact equivalent. Prove *either* one of the implications. (i.e. prove either (a) \Rightarrow (b) or (b) \Rightarrow (a)).

國立成功大學 111 學年度「碩士班」研究生甄試入學考試線性代數

In this test, all vector spaces are finite dimensional over \mathbb{C} .

- 1. (15 points) Let T be a linear operator on a vector space V. Prove that T is diagonalizable if and only if its minimal polynomial is square-free.
- 2. (15 points) Let V be a vector space. A linear operator S on V is semisimple if for every S-invariant subspace W of V there exists an S-invariant subspace W' of V such that $V = W \oplus W'$. Prove that every diagonalizable operator on V is semisimple, and deduce that every linear operator T on V can be decomposed uniquely as T = S + N, where S is semisimple, N is nilpotent, and SN = NS.
- 3. (15 points) Let T and U be normal operators on an inner product space V such that TU = UT. Prove that $UT^* = T^*U$, where T^* is the adjoint of T.
- 4. (15 points) Let T and U be Hermitian operators on an inner product space $(V, \langle \cdot, \cdot \rangle)$ such that $\langle T(x), x \rangle > 0$ for all nonzero $x \in V$. Prove that UT is diagonalizable and has only real eigenvalues.
- 5. (15 points) Find the total number of distinct equivalence classes of congruent $n \times n$ real symmetric matrices and justify your answer.
- 6. (15 points) Let A be an $n \times n$ complex matrix, t be a variable, and I be the identity matrix. Prove that

$$\det(I - tA) = \exp\left(-\sum_{i \ge 1} \frac{\operatorname{tr}(A^i)t^i}{i}\right).$$

7. (10 points) Let $A=(a_{i,j})$ be a $2n\times 2n$ matrix such that $A^T=-A$. The Phaffian of A is defined as

$$\operatorname{pf}(A) := \frac{1}{2^n n!} \sum_{\sigma \in S_{2n}} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{\sigma(2i-1), \sigma(2i)},$$

where S_{2n} is the symmetric group of order 2n and $sgn(\sigma)$ is the signature of σ . Prove that for any $2n \times 2n$ matrix B,

$$pf(BAB^T) = det(B) pf(A).$$