國立成功大學 109 學年度「碩士班」研究生甄試入學考試高等微積分

- 1. (15%) Suppose that E is a compact subset of \mathbb{R} and that $f: \mathbb{R} \to \mathbb{R}$. Prove that if f is continuous on E, then f is uniformly continuous on E.
- 2. (a) (5%) State the Implicit Function Theorem.
 - (b) (10%) Prove that there exist functions u(x,y), v(x,y), and w(x,y), and an r>0 such that u,v,w are continuously differentiable and satisfy the equations

$$u^{5} + xv^{2} - y + w = 0$$

$$v^{5} + yu^{2} - x + w = 0$$

$$w^{4} + y^{5} - x^{4} = 1$$

on
$$B_r(1,1)$$
, and $u(1,1) = 1$, $v(1,1) = 1$, $w(1,1) = -1$.

- 3. (a) (10%) Prove that if $f:[0,1] \to \mathbb{R}$ is continuous and $\int_0^1 |f(x)| dx = 0$, then f(x) = 0 for all $x \in [0,1]$.
 - (b) (5%) State the Weierstrass Approximation Theorem.
 - (c) (10%) Prove that if $f:[0,1]\to\mathbb{R}$ is continuous and

$$\int_0^1 f(x)x^k dx = 0 \quad \text{for } k = 0, 1, \cdots,$$

then f(x) = 0 for all $x \in [0, 1]$.

- 4. (a) (5%) State the Arzela-Ascoli Theorem.
 - (b) (10%) Let $f_n:[0,1]\to\mathbb{R}$ be continuous and be such that $f_n(0)=0$ for every $n\in\mathbb{N}$. Suppose that the derivatives f'_n exist and are uniformly bounded on (0,1). Prove or disprove that f_n has a uniformly convergent subsequence.
- 5. (15%) Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies $|f(x) f(y)| \leq \frac{1}{2}|x y|$ for all $x, y \in \mathbb{R}$. Prove that f has a unique fixed point.
- 6. (15%) Let $f_n:[0,1]\to\mathbb{R}$ be continuous for every $n\in\mathbb{N}$. Suppose that $\{f_n\}$ converges uniformly to f on [0,1] and that $\{x_n\}$ is a sequence in [0,1] converging to a point $x\in[0,1]$. Prove or disprove that $\lim_{n\to\infty} f_n(x_n) = f(x)$.

國立成功大學 109 學年度「碩士班」研究生甄試入學考試線性代數

- 1. Find e^A , where $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$. (15 points)
- 2. Let $T_j: \mathbb{R}^2 \to \mathbb{R}^2$, j = 1, 2, be a rotation by some angle θ_j about some point $x_j \in \mathbb{R}^2$. Show that if $\theta_1 + \theta_2 \notin \{2k\pi \mid k \in \mathbb{Z}\}$, then the composition T_2T_1 , is also a rotation about some point. (15 points)
- 3. Let A be a real skew-symmetric matrix, that is, $A^t = -A$. Prove the following statements.
 - (a) Each eigenvalue of A is either 0 or a purely imaginary number. (10 points)
 - (b) The rank of A is even. (10 points)
- 4. Let $C([-\pi, \pi])$ be the space of real continuous functions on $[-\pi, \pi]$ with inner product $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx$. Find an orthonormal basis for the subspace $W = \text{span}(1, x, \sin x)$. (15 points)
- 5. Let $M_{2\times 2}$ be the space of 2×2 real matrices. Consider the linear operator S on $M_{2\times 2}$ defined by

$$S(X) = \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} X + X \begin{bmatrix} 0 & c \\ d & 0 \end{bmatrix},$$

where $a, b, c, d \in \mathbb{R}$.

(a) Write down the representative matrix of S with respect to the basis

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}. (10 \text{ points})$$

- (b) Give the necessary and sufficient condition on a, b, c, d so that S is invertible. (10 points)
- 6. Let A be an $n \times n$ (real or complex) matrix. Show that if A is nilpotent (i.e. $A^k = 0$ for some $k \in \mathbb{N}$), then I A is invertible, where I is the $n \times n$ identity matrix. (15 points)