一、本卷有試題10題,共100分。 二、作答請務必標清楚題號。

Part I. ALGEBRA

- Let G be a group written additively with identity element 0. Note that G may not be abelian. For mappings f: G → G and g: G → G, one can define the sum of f and g by (f + g)(x) = f(x) + g(x) for all x ∈ G. A mapping f of G is said to be nilpotent if there is some positive integer n such that fⁿ(x) = 0 for all x ∈ G. Here fⁿ is f composed with itself n times. (For example f²(x) = (f ∘ f)(x) = f(f(x)) and f³(x) = (f ∘ f)(f(x)) = f(f(f(x))) for all x ∈ G.)
 Show that if f and g are nilpotent endomorphisms of G such that f∘ g = g ∘ f, then f + g is nilpotent.
- [10points] 2. Let R be a ring with 1. An ideal M of R is said to be maximal if $M \neq R$ and for any ideal I such that $M \subseteq I \subseteq R$, either I = M or I = R. Use Zorn's Lemma ro show that every proper ideal of R is contained in a maximal ideal.
- [10points] 3. Let R be a ring. We say that R is *prime* if for any nonzero elements $a, b \in R$, there is an element $x \in R$ such that $axb \neq 0$. Show that the following statements are equivalent.
 - (i) R is prime.
 - (ii) If I and J are ideals of R such that IJ = 0, then either I = 0 or J = 0.
- [10points] 4. Let F be a field of characteristic p > 0, and $a \in F$. Consider the polynomial $f(x) = x^p a \in F[x]$. Prove that f(x) is irreducible unless $a = b^p$ for some $b \in F$.
- [10points] 5. Let U, V, X and Y be vector spaces over \mathbb{F} . Let $\alpha : X \to U$ and $\beta : Y \to V$ be linear transformations. Show that $\ker(\alpha \otimes \beta) = \ker(\alpha) \otimes Y + X \otimes \ker(\beta)$.

Part II. ANALYSIS

[15points] 6. (a) Let f_k , k = 1, 2, ..., be nonnegative and measurable on E. Prove that

$$\int_{E} \left(\sum_{k=1}^{\infty} f_k \right) = \sum_{k=1}^{\infty} \int_{E} f_k.$$

- (b) Let f be nonnegative and measurable on E and assume that $\int_E f < \infty$. Prove that $f < \infty$ a.e. in E.
- (c) Let $\{f_k\}$ e a sequence of measurable functions on E and assume that $\sum_{k=1}^{\infty} \int_{E} |f_k| < \infty$. Show that $\sum_{k=1}^{\infty} f_k$ converges absolutely a.e. in E.
- [10points] 7. Let $\phi(x) \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} \phi = 1$. If $f \in L^p(\mathbb{R}^n)$, $1 \le p < \infty$, show that $\lim_{\epsilon \to 0} \|f_{\epsilon} f\|_p = 0$, where $f_{\epsilon}(x) = f * \phi_{\epsilon}(x) = \int_{\mathbb{R}^n} f(x t)\phi_{\epsilon}(t)dt$, and $\phi_{\epsilon}(t) = \epsilon^{-n}\phi(\frac{t}{\epsilon})$ for each $\epsilon > 0$.
- [10points] 8. Let f, $\{f_k\} \in L^p(\mathbb{R}^n)$, $1 \le p < \infty$, and assume that $f_k(x) \to f(x)$ a.e. and $||f_k||_p \to ||f||_p$. Show that $\lim_{k \to \infty} ||f_k f||_p \to 0$.
- [10points] 9. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a Lebesgue measurable function such that

$$m(\lambda) = \mu(\lbrace x \in \mathbb{R}^n : |f(x)| > \lambda \rbrace) \le C\lambda^{-2}, \quad \lambda > 0.$$

Prove that there is a constant C_1 such that for any Borel set $E \subset \mathbb{R}^n$ of finite and positive measure

$$\int_{E} |f(x)| d\mu(x) \le C_1 \sqrt{\mu(E)}.$$

[5points] 10. Assume that (X, \mathcal{A}, μ) is a measure space, and $f \in L^1(X, \mathcal{A}, \mu)$ satisfies that $||f||_1 = \int_X |f(x)| d\mu(x) = 1$.

Prove that

$$\int_{E} \log |f(x)| d\mu(x) \le -\mu(E) \log \mu(E)$$

for all subsets $E \in \mathscr{A}$ with $0 < \mu(E) < \infty$.