國立成功大學91學年度產熟的考試(茶稅數學 試題)第1页

1. Let A be

$$A \equiv \left\{ (x,y) : x, y \in [0,1], x = \sum_{n=1}^{\infty} \frac{a_n}{7^n}, a_n = 2, 5 \quad y = \sum_{n=1}^{\infty} \frac{b_n}{5^n}, b_n = 1, 3 \right\}$$

Prove or disprove: i) A is closed; ii) A is open; iii) A is countable; iv) A is dense in [0,1]; v) A is Borel measurable. If A is Lebesgue measurable, find the measure $\mu(A)$. (10%)

2. Let f be in $L^1(I,\mu)$ and let S be $\{x:x\in I,\,f(x)\in Z\}$. Apply the bounded convergence theorem to show that

$$\lim_{n \to \infty} \int_{I} |\cos(\pi f(x))|^{n} dx = \mu(S)$$
(10%)

3. Let X be the space of continuous and 2π periodic functions. Show that

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)g(x)dx, \qquad f, g \in X$$

define an inner product in X. According to the mean square approximation we approximate $f(x) \in X$ by the trigonometric series

$$S_n(x) = \frac{1}{2}a_0 + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx).$$

Choose proper coefficients a_k, b_k such that the integral (mean square error)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - S_n(x)|^2 dx$$

attains the minimum.

(10%)

4. If f and g measurable in \mathbb{R}^n , their convolution is defined by

$$(f * g)(x) \equiv \int_{\mathbb{R}^n} f(y)g(x - y)dy$$

provided the integral exists. Show that if $f \in L(\mathbb{R}^n)$ and $g \in L(\mathbb{R}^n)$ then (f * g)(x) exists for almost every $x \in \mathbb{R}^n$ and

$$\int_{\mathbb{R}^n} |f * g| dx \le \left(\int_{\mathbb{R}^n} |f| dx \right) \left(\int_{\mathbb{R}^n} |g| dx \right)$$

Furthermore, if g is bounded and uniformly continuous on \mathbb{R}^n , then the convolution f * g is bounded and uniformly continuous on \mathbb{R}^n . (10%)

5. Let C[a,b] be the space of all continuous function on the closed interval [a,b] and define

$$||f||_{\infty} \equiv \max_{x \in [a,b]} |f(x)|$$

Show that $\|\cdot\|_{\infty}$ is a norm in C[a,b]. Is C[a,b] a Banach space? separable? Let $D=\{f\in C[a,b]\mid \|f\|_{\infty}\leq 1\}$. Is D closed? bounded? compact? Can you describe all compact subsets of C[a,b]? Let $C^1[a,b]$ be the space of all continuous differentiable function on the closed interval [a,b]. Is $C^1[a,b]$ complete under this norm $\|\cdot\|_{\infty}$?

(10%)

國立成功大學9/學年度產與 考試(茶 祺 鼓掌 試題) 第2页

6. Brief explanation for your examples is required.

(10%)

- (i) Give an example of a group G and a normal subgroup H of G such that G does not have any subgroup isomorphic to G/H.
- (ii) Let G be the group of all invertible n by n matrices over \mathbb{R} . Find a nontrivial normal subgroup of G.
- (iii) Is it possible that there is an infinite field with finite characteristic? Why or why not?
- (iv) Give an example of a ring which is Noetherian but not Artinian.

7. (10%)

- (i) Let G be the finite group $\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$. Find a one-to-one homomorphism from G into a symmetric group.
- (ii) Let R be the category of rings and ring homomorphisms. Construct a covariant functor $R \to R$ that assigns to each ring N the polynomial ring N[x].
- 8. An integral domain R is called an Euclidean domain if there is a mapping τ from the set of nonzero elements of R to N that satisfies the following two conditions: (1) Given a and b ≠ 0 in R, there exist q and r in R such that a = bq + r and either r = 0 or τ(r) < τ(b). (2) If a ≠ 0 and b ≠ 0 in R, then τ(ab) ≥ τ(a). Let R be an Euclidean domain. Call R residually finite if R/I is a finite ring for all nontrivial ideal I of R. (10%)</p>
 - (i) If $\{r \in R \mid \tau(r) = k\}$ is a finite set for all $k \in \mathbb{N}$, show that R is residually finite.
 - (ii) Show that $\mathbb{Z}(\sqrt{-1})$ is residually finite.
 - (iii) Give an example of an Euclidean domain which is not residually finite.

9. (10%)

- (i) Explain why an angle of 90° can be trisected by ruler and compass constructions.
- (ii) Explain why an angle of 60° can not be trisected by ruler and compass constructions.
- 10. Let \mathbb{C}^{\times} denote the multiplicative group of all nonzero complex numbers. Let G be a finite group. A homomorphism $\chi: G \to \mathbb{C}^{\times}$ is called a *character* of G. A character χ is called *trivial* if $\chi(g) = 1$ for all $g \in G$. (10%)
 - (i) Suppose that G is the cyclic group of order 5. Give an example of a nontrivial character χ of G.
 - (ii) Let G and χ be as in (i). Show that $\sum_{g \in G} \chi(g) = 0$.
 - (iii) Let G be any finite group, and let χ be any character of G. Show that $\sum_{g \in G} \chi(g)$ is zero if and only if χ is not trivial.