國立成功大學89學年度發展的考試(茶似数學 試題)等1 1

(1) Let V be a real vector space.

10% (a) Suppose that $J: V \to V$ a linear map such that $J^2 = -I$, where I is the identity map Prove that dimV is an even integer.

10% (b) Let J_0 be the $2n \times 2n$ matrix $\begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$, where I_n is the $n \times n$ identity matrix. Let A be a $2n \times 2n$ matrix such that $A^t J_0 A = J_0$. Prove that λ is an eigenvalue of A if and only if $\frac{1}{3}$ is an eigenvalue of A.

(2) Let A be any $n \times n$ matrix. We let e^A be the matrix $\sum_{i=0}^{\infty} \frac{A^i}{i!}$

5% (a) Prove that AB = BA implies that $e^{A+B} = e^A e^B$.

(b) Prove that e^A is invertible for every A. What is $(e^A)^{-1}$?

5% (c) Prove that $det(e^A) = e^{TtA}$.

5%

(3) Let A be a complex $n \times n$ matrix. Prove that there exist complex matrices A_n and A_n with the following properties:

7% (a) A_s is diagonalizable and A_n is nilpotent.

8% (b) $A_s A_n = A_n A_s$ and $A = A_s + A_n$.

8% (4) Let $G = \langle x, y | xy = y^2x, yx = x^2y \rangle$. Find |G|.

(5) Let p be a prime number.

12% (a) Let *P* be a *p*-group. Let *A* be a normal subgroup of order *p*. Prove that *A* is contained in the center of *P*.

(b) Let G be a finite group and H a normal subgroup of G. Assume that the order of H is p. Prove that H is contained in every p-Sylow subgroup of G.

18% (6) Let A be a finite dimensional algebra over a field F. If A contains no nonzero zero-divisors, then A is a skew-field.

- (7) Let $\{f_n\}$ be a sequence of absolutely continuous functions which converges to a function f uniformly. Is f absolutely continuous? Prove it or give a counterexample! (10pt)
- (8) Assume that $X = \{a, b\}$ and μ is a measure defined on X by $\mu(a) = 1$, $\mu(b) = \mu(X) = \infty$. and $\mu(\phi) = 0$. Is $L^{\infty}(\mu)$ the dual space of $L^{1}(\mu)$? State your reasons.

(9) Prove that for
$$a_{ij} \ge 0$$
, $\left(\sum_{i} (\sum_{j} a_{ij})^p\right)^{\frac{1}{p}} \le \sum_{j} \left(\sum_{i} a_{ij}^p\right)^{\frac{1}{p}}$. (20pt)

(10)(a) Show that in a metric space $\langle X, \rho \rangle$, the function $f(x) = \rho(x, x_0)$ is a continuous function.

(b) Show that in the metric space $\langle R^2, \rho \rangle$, where $\rho(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$, the

set
$$S = \{(x, y) : \sqrt{(x-1)^2 + (y-a)^2} < 1\}$$
 is open. (5pt)

= 1 (x,y): 1x-11+14- a1 < 17

(11)(a) Show that $\lim_{p\to\infty} \|< x_n>\|_{l^p}=\|< x_n>\|_{l^\infty}$. If you think this is wrong, please give a counterexample.

(b) Let $f \in L^p(\mu)$. Show that the set $N = \{x : f(x) \neq 0\}$ is σ -finite. (20pt)

(福日特用本弧镁印制版情以黑色正依常寫或打字並清勿起出此及)

命題人